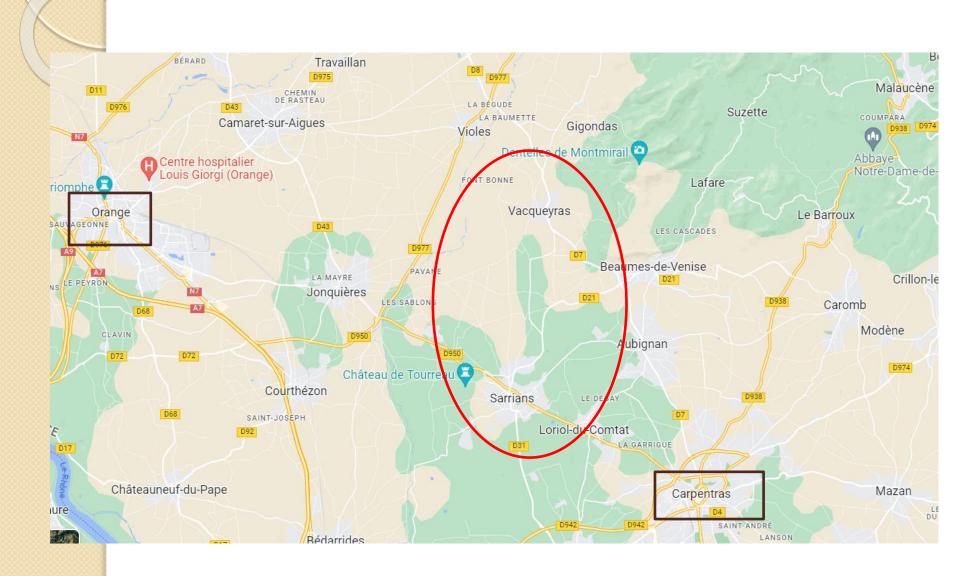
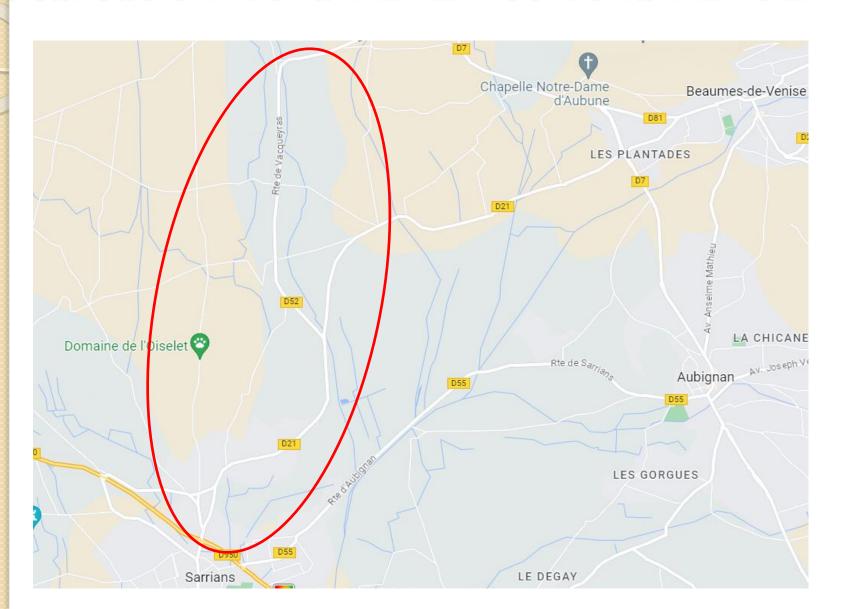


ERASMUS

Entretien d'un itinéraire composé de 2 sections de routes départementalestrafic T2


Département de Vaucluse

CAS DE LA RD 21 SECTEUR D'APT PR 0+000 - PR 2+923


CAS DE LA RD 52 PR9+250 – PR15+200

Situation de l'étude

• ETUDE DE LA RD 21

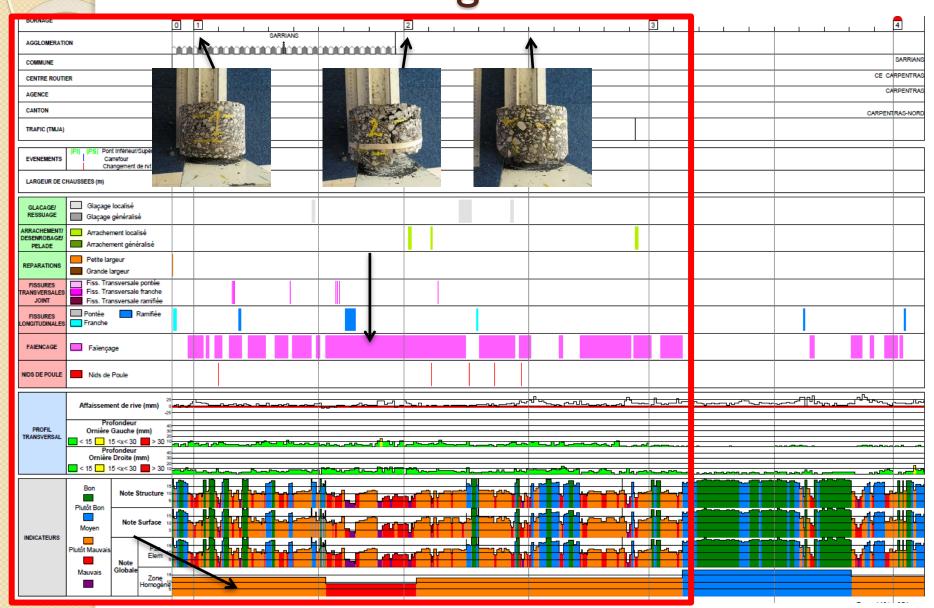
La RD 21 - Photos 2023 Le giratore

La RD 21 - Photos 2023 Le giratoire

La RD 21 - Photos 2023 Le giratoire

RD 21 en agglomération de Sarrians

Intersection RD 21/RD52



RD 21 - Présentation

- Section :
 - o en partie en agglomération sur environ 900m
 - o en partie hors agglomération sur 1000m
- Chaussée bidirectionnelle à 2 voies
- Largeur actuelle : varie de 6,00 m à 6,50 m
- Longueur de la section étudiée: environ 1900 m
- la chaussée est de type souple avec des revêtements bitumineux

RD 21 Relevé de dégradations de 20 Fort pour les chaussées

Les dégradations observées

- Nombreuses fissures longitudinales
- La fissuration a évolué en faïençage
- Faïençage hors BdR maille large, et sur BdR maille fine
- Orniérage < 10mm
- Affaissement de rive sur 10% de l'itinéraire, profondeur 20mm
- Remarque : Le niveau de fissuration était élevé en 2013, en 2023 la surface s'est encore dégradée, en quantité et en ouvertures de fissures (cf photos 2023)
- La fissuration s'est transformée en faïençage

RD 21 classe de trafic

Trafic PL 2021: 337 PL/j dans les 2 sens

Trafic PL 2021: 168 PL/sens

flar	Classe		se	TE TA		15	TA		13	T2	!	1	T1		0	I	•	TEX
Classe		15	14	T3-	T3+	T2-	T2+	11	T1+	TO-	T0+	TS:	TS+	IEA				
TMJA	(25 9	50	85 1	50 20	0 3	90 9	500 7	50 12	00 20	100 30	000 5	000				

Tableau 1 - Définition des classes de trafic

confirmer trafic PL

RD 21 Déflexion

dossier : L23026									
		ESS	SAIS DE	DEFLEX	(ION				
AF		DEMANDEUR :	ARD Car	pentras/F	/allière				
Départeme VAUCLU	ent	Etude: Rd 21 Sarrians DATE: 11/07/2023				*:*:*:*:*:*:	::		
VAUCI U	SF				sen	s 1	Sen	s 2	
W. G. C. L.	~_				Droite	Axe	Axe	Droite	ensemble
Conseil Départemental . DISR		Nombre de mesures :			18	19	0	10	47
SPE _ Laboratoire		Déflexion moyenne en mm/	100 :		46	49	#DIV/0!	69	52
		Déflexion maxi en mm/100	:		74	96	0	92	96
		Déflexion mini en mm/100 :		1	22	20	0	44	20
		Ecart-type			15	20	#DIV/0!	16	19
		Moyenne + 2 écarts types			75	88	#DIV/0!	101	90
Etat de la chaussée :	Humide	Normale	V	Sèche					
Essais effectués sur couche	Essais effectués sur couche de : Roulemen			Véhicule uti	lisé : Camior	n CEER C	arpentras		
Température : 25°				Poids de l'e	ssieu arrière	:	13,0	040	Tonnes

RD 21 Déflexion

			Droite	Axe	Axe	Droite	Axe	Droite	Axe	Droite
Pr 0+000 m			0	64		52		64		52
			74				74			
Pr 0+100 m	C1	1	00	96				96		
		1	50 32				32			
		2	00	30		62		30		62
		2	50 22				22			
		3	00	24				24		
		3	50 68				68			
Pr 2-500 m		C15 4	00	42		92		42		92
			50 50				50			
		5	00	28				28		
		5	50 38				38			
		6	00	50		88		50		88
			50 34				34			
			00	76				76		
			50 42				42			
			00	48		84		48		84
			50 52				52			
Pr 2+000 m	C2		00	56				56		
			50 48				48			
		10		44		66		44		66
		10					38			
		11	_	20				20		
		11					36			
		12	_	30		44		30		44
		12					32			
		13	_	66				66		
		13					48			
Pr 2+500 m	C3	14	_	66		56		66		56
		14					74			-
		15		60				60		
		15					62			
		10	~~ <u>~</u>		1					

La déflexion

- SENS I
 - Déflexion caractéristique en axe :88/100
 - Déflexion caractéristique en rive :75/100
- **SENS 2**
 - Déflexion caractéristique en rive : 101/100

Classes de déflexion	D1	D2	D3	D4	D5	D6	D7	D8	D9		
Seuils de déflexion caractéristique	de 0	de 20	de 30	de 45	de 75	de 100	de 150	de 200	≥ 300		
en 1/100'mm	à 19	à 29	à 44	à74	à 99	à 149	à 199	à 299	- 300		
Niveau	Niveau global de comportement en fonction de la classe de trafic										
T1 - T0	Bo	on	Moyen			Mau	wais				
13 - 12	2 Bon Moyen						Mauvais				
T5 - T4	Bon				Moyen	Mauvais					

Carottage CI

Dossier: L23026

N° 1 : Pr 0 + 100 m _ sens 1_BDR Droite

N°	Matériau	Etat	Collage	Epais	seur	Photo de la Carotte	Paroi / Site
				couche	Totale		
2 0 2 3 - C E - R D 2 1	BBTM 0/10 BBSG 0/10 BB 0/10	Sain Sain Sain	oui	2,5 4,2 2,0	2,5 6,7 7,7	GNT	
0 6 7							
						Observations :	

Carottage C2

N° 2 : Pr 2_ sens 1_Axe

N°	Matériau	Etat	Collage	Epais	seur	Photo de la Carotte	Paroi / Site
				couche	Totale		
2 0 2 3 - C E - R D 2 1 - 0 6 8	BBTM 0/10 BBSG 0/10 BB 0/10	Médiocre Fracturée Fracturée	oui	2,5 5,0 2,0	2,5 7,5 9,5		
						Observations :	

Carottage C3

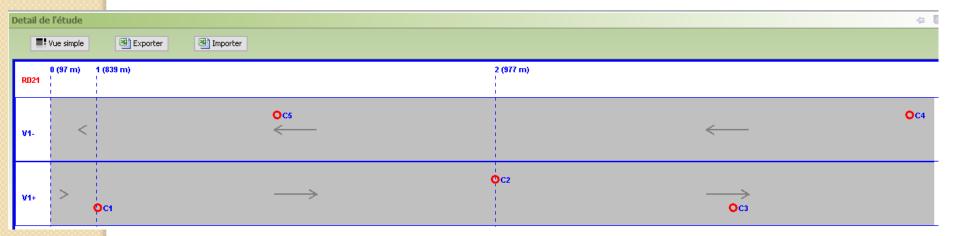
 N° 3 : Pr 2+500 m _ sens 1_BDR Droite

Nª	Matériau	Etat	Collage	Epais	seur	Photo de la Carotte	Paroi / Site
				couche	Totale		
2 0 2 3 - C E - R D 2 1 - 0 6 9	BBTM 0/10 BBSG 0/10	Fracturée	oui	2,5 6,5	2,5 9,0		
						Observations :	

Carottage C4 - sens 2

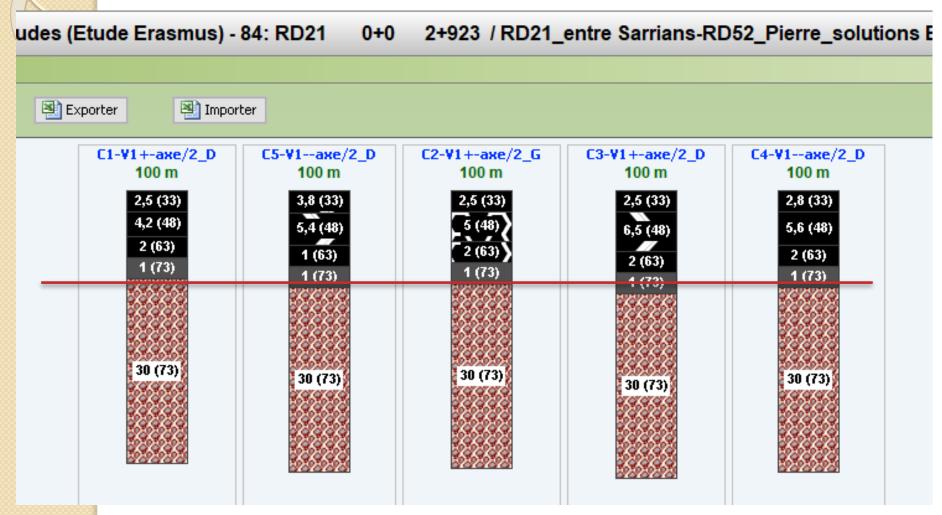
 N° 14 : Pr 2 + 870 m _ sens 2_BDR Droite

Nº	Matériau	Etat	Collage	Epais	seur	Photo de la Carotte	Paroi / Site
				couche	Totale		
2							
)							AND DESCRIPTION OF THE PERSON
2							
3							
	BBTM 0/10	Sain	oui	2,8	2,8		
0	DD1M 0/10	Sam	oui	2,0	2,0		
E						10000000000000000000000000000000000000	
-	BBSG 0/10	Sain		7,6	10,4		
}	BB30 0/10	Jain		7,0	10,4		
)							
2							
•							
)							
8							
0							
						Observations:	



Carottage C5 – sens 2

 N° 15 : Pr 1 + 380 m (2-500 m) _ sens 2_BDR Droite


N°	Matériau	Etat	Collage	Epais		Photo de la Carotte	Paroi / Site
2 0 2 3 - C E - R D 2 1 1 - 0 8	BBTM 0/10 BBSG 0/10	Fissuré Fissuré	oui	3,8 5,4	3,8 9,2		Dessous de la carotte
						Observations :	

RD 21 implantation des 5 carottages

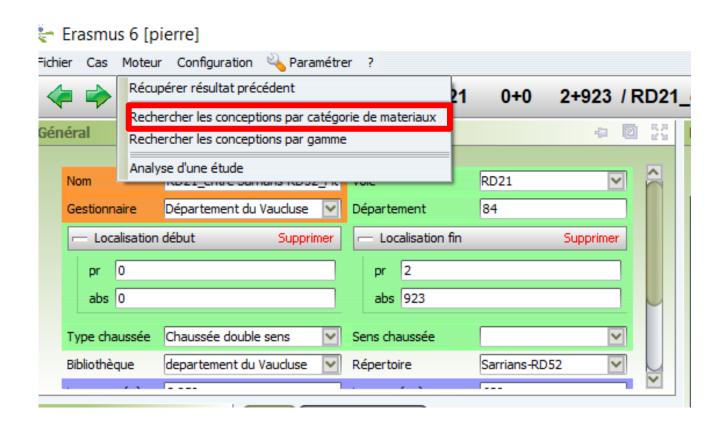
RD 21 La structure

Environ 11cm de produits bitumineux

Diagnostic CI

Solution 1: Orniérage / / existe								
<mark>Hypothèse</mark> Orniérage	Fatigue	Fluage	Dégâts	dus au gel	Fissura	ation thermique	Remontée de fissures	Drainage
existe								
Section Trafic: 303. PL/jour: t1 Calage mécanique (2023) Déflexion calculée:87 mm/100 Valeur de calage:87 mm/100	fort(e)	non		non		fort(e)	х	
<mark>bbtm10</mark> BB-TRES-MINCE-0/10 (1990) 2.5 cm, 33 an(s), collé 2000 MPa / 2.5 cm	non	non				fort(e)	faible	x
bbsg-0/10-C3 BBSG-0/10-CLASSE-3 (1975) 4.2 cm, 48 an(s), collé 2000 MPa / 4.2 cm	moyen(ne)					fort(e)	fort(e)	х
<mark>bb-standard</mark> Béton bitumineux (1960) 2 cm, 63 an(s), collé 2000 MPa / 2. cm	fort(e)					fort(e)	non	х
es-1) Enduit bicouche (1950) 73 an(s), collé		х		х			х	х
gnt1 Matériau non traité (1950) 30 cm, 73 an(s), collé 600 MPa / 10 cm 480 MPa / 10 cm 240 MPa / 10 cm	moyen(ne)			x		x	х	x
<mark>Sol</mark> 48 MPa	fort(e)	Matériau	Etat	Collage	Epais couche	Seur P Totale	hoto de la Carotte	
		BBTM 0/10	Sain	oui	2,5	2,5		* * *
		BBSG 0/10	Sain	oui	4,2	6,7		
						11	THE TOTAL PARTY.	
		BB 0/10	Sain		2,0	7,7		

Diagnostic C2


	Solution 1	Fatigue	Fluage		Dégâts dus a	u gel	Fissuration thermique	Remontée de fissures	Drainage
	<mark>Section</mark> Trafic: 303. PL/jour: t1 Calage mécanique (2023) Déflexion calculée:49 mm/100 Valeur de calage:47 mm/100	fort(e)	non		non		fort(e)	х	
	<mark>bbtm10</mark> BB-TRES-MINCE-0/10 (1990) 2.5 cm, 33 an(s), collé 2100 MPa / 2.5 cm	non	non				fort(e)	moyen(ne)	x
	bbsg-0/10-C3 BBSG-0/10-CLASSE-3 (1975) 5 cm, 48 an(s), collé 1000 MPa / 5. cm	fort(e)					fort(e)	fort(e)	x
	<mark>bb-standard</mark> Béton bitumineux (1960) 2 cm, 63 an(s), collé 1000 MPa / 2. cm	fort(e)					fort(e)	non	x
	<mark>es-b</mark> Enduit bicouche (1950) 73 an(s), collé		x		х			x	x
	gnt1 Matériau non traité (1950) 30 cm, 73 an(s), collé 600 MPa / 10 cm 480 MPa / 10 cm 240 MPa / 10 cm	non			х		×	×	×
	117 MPa								X
25 -	dommages BBSG-0/10-CLASSE-3 (1975)						The state of the s		
76		BBTM 0/10	Médiocre	oui	2,5	2,5			
25		BBSG 0/10	Fracturée	oui	5,0	7,5			
75 60 25		BB 0/10	Fracturée		2,0	9,5			
00 0	5 10 15 20 25 30 35 40 48 annee								1

Cahier des charges

- Durée de vie calculée ≥ 15 ans
- Pas de contrainte de gel
- Pas de contrainte de seuil : libre

RD 21 – solutions bitumineuses

Analyse Erasmus de 8 conceptions

Vue détaillée	C1-0+100-V1+-axe/2_D 0+100 96mm/100 100 m	C5-1+380-V1axe/2_D 1+380 92mm/100 100 m	C2-2+0-¥1+-axe/2_G 2+0 52mm/100 100 m	C3-2+500-V1+-axe/2_D 2+500 74mm/100 100 m	C4-2+870-Y1axe/2_D 2+870 70mm/100 100 m
W Vue panoramique Tri: Coût	2,5 bbtm10 (33) 4,2 bbsg-0/10-C3 (48) 2 beton-bitumineux (63)	3,8 bbtm10 (33) 5,4 bbsg-0/10-C3 (48) 1 beton-bitumineux (63)	2,5 bbtm10 (33) 5 bbsg-0/10-C3 (48) C2 beton-bitumineux (63)	2,6 bbtm10 (33) 6,5 bbsg-0/10-C3 (48) 2 beton-bitumineux (63)	2,8 bbtm10 (33) 5,6 bbsg-0/10-C3 (48) 2 beton-bitumineux (63)
Toutes les voies	1 es (73)	1 es (73)	1 es (73)	1 es (73)	1 es (73)
Bilan écologique Export Résumé Pdf	VI	V1+	V1- Année : 1950	V1-	V1+
Export XIs Détail	30 gnt (73)	38 gnt (73)	30 gnt (73)	30 gnt (73)	30 gnt (73)
Export XIs Dommages Export Détail Pdf					
V1+-axe/2_D + V1axe/2_D 2023: B85G-0/10-CLASSE-2 (6.0 cm) 2023: Fraisage (3.0 cm) 62 €/ml Fr 3cm +BBSG CI2	12 ans Fatigue de Sol Dommage (1)	Fraisage (2023) Epaisseur non permise 3. [4-38.][10-30.2]	Fraisage (2023) Epaisseur non permise 3. [9:29.5]	38 ans bbsg-0/10-C2 D= 0.03 (5.%)	38 ans bbsg-0/10-C2 D= 0.06 (5.%)
V1+-axe/2_D + V1axe/2_D 2023: BBSG-0/10-CLASSE-3 (6.0 cm) 2023: Fraisage (3.0 cm)	12 ans Fatigue de Sol Dommage (1)	Fraisage (2023) Epaisseur non permise 3. [4-;8.][10;30.2]	Fraisage (2023) Epaisseur non permise 3. [9;29.5]	38 ans bbsg-0/10-C3 D = 0.03 (5.%)	38 ans bbsg-0/10-C3 D= 0.06 (5.%)
Fr 3cm #BBSG CI3					
VI+-axe/2_D+VIaxe/2_D+VI+-axe/2_G 2023: BBSG-0/10-CLASSE-2 (6.0 cm) 65 €/ml BBSG CI2	22 ans bbsg-0/10-C2 D= 0.03 (5.%)	30 ans bbsg-0/10-C2 D= 0.02 (5.%)	27 ans bbsg-0/10-C2 D= 0.25 (5.%)	> 50 ans bbsg-0/10-C2 D= 0.01 (5.%)	> 50 ans bbsg-0/10-C2 D= 0.02 (5.%)
V1+-axe/2_D + V1axe/2_D + V1+-axe/2_G 2023: BBSG-0/10-CLASSE-3 (6.0 cm) BBSG CI3	22 ans bbsg-0/10-C3 D= 0.03 (5.%)	30 ans bbsg-0/10-C3 D= 0.02 (5.%)	27 ans bbsg-0/10-C3 D= 0.25 (5.%)	> 50 ans bbsg-0/10-C3 D= 0.01 (5.%)	> 50 ans bbsg-0/10-C3 D= 0.02 (5.%)

Les solutions bitumineuses

V1axe/2_D 2023: 88-DISCONTINU-COUCHE-HINCE (4.0 cm) 2023: 68-0/14-CLASSE-3 (8.0 cm) 2023: Fraisage (4.0 cm) FR 4cm+8GB+4BBM	30 ans gb-0/14-C3 D= 0.46 (5.%)	46 ans gb-0/14-C3 D= 0.28 (5.%)	Faisape (2023) Fraisape (2023) Epaisseur non permise 4. [9,29.5]	> 50 ans gb-0/14-C3 D= 0.14 (5.%)	> 50 ans gb-0/14-C3 D= 0.23 (5.%)
V1+-axe/2_D + V1axe/2_D 2023: 88-DISCONTINU-COUCHE-MINCE (4.0 cm) 2023: 68-0/14-CLASSE-3 (8.0 cm) 2023: Fraisage (3.0 cm) Fr3cm+8GB+4BBM	40 ans gb-0/14-C3 D= 0.33 (5,%)	15 ans Fraisage (2023) Epaisseur non permise 3. [4,8.][10,30.2]	15 ans Fraisage (2023) Epaisseur non permise 3. [9;29.5]	> 50 ans gb-0/14-C3 D= 0.11 (5.%)	> 50 ans gb-0/14-C3 D= 0.18 (5,%)
V1+-axe/2_G 2023: 88-DISCONTINU-COUCHE-MINCE (4.0 cm) 2023: 68-D/14-CLASSE-3 (11.0 cm) 2023: Fraisage (9.0 cm) Fr9cm+1*TGB+4BBM	10 ans Fatigue de gb-0/14-C3 D= 1.46	15 ans Fraisage (2023) Epaisseur non permise 9. [4 ₄ 8.][10 ₄ 30.2]	18 ans gb-0/14-C3 D= 0.81 (5.%)	36 ans gb-0/14-C3 D= 0.37 (5.%)	15 ans Fraisage (2023) Epaisseur non permise 9. [3 ₄ 8.][10 ₄ 30.4]
V1+-axe/2_G 2023: BBHE-0/10-CLASSE-2 (6.0 cm) 2023: GB-0/14-CLASSE-3 (11.0 cm) 2023: Fraisage (12.0 cm) Fr12cm ²⁺ 1 rd GB+6BB	17 ans gb-0/14-C3 D= 0.86 (5.%)	19 ans gb-0/14-C3 D= 0.76 (5.%)	31 ans gb-0/14-C3 D= 0.45 (5.%)	25 ans gb-0/14-C3 D= 0.57 (5.%)	25 ans gb-0/14-C3 D= 0.56 (5,%)

RD 21 solutions bitumineuses

Chaussée existante Chaussée existante Chaussée existante Chaussée existante Chaussée existante Surélévation de +5cm de PR 2+923 la chaussée actuelle 6cm BBSG cl2 ou cl3 Fraisage 12 cm +11GB			ur chaussée -6cm	rgement s actuelle +	Red	RD 21		
Surélévation de +5cm de PR 2+923 la chaussée actuelle 6cm BBSG cl2 ou cl3 6cm BBSG cl2 ou cl3			n BBSG cl2 ou cl3	2 ou cl3	6cm BBSG			
Surélévation de +5cm de PR 2+923 la chaussée actuelle 6cm BBSG cl2 ou cl3 6cm BBSG cl2 ou cl3	SOLUTION	Chaussée existante					aussée existante	CI
Surélévation de +5cm de PR 2+923 la chaussée actuelle 6cm BBSG cl2 ou cl3 6cm BBSG cl2 ou cl3	1	,						^
la chaussée actuelle 6cm BBSG cl2 ou cl3 6cm BBSG cl2 ou cl3								0
6cm BBSG cl2 ou cl3 6cm BBSG cl2 ou cl3	23	PR 2+923	on de +5cm d	Surélévati				
	\	\	sée actuelle	la chaus				
	V	1						<u> </u>
Fraisage 12 cm +11GB	_		n BBSG cl2 ou cl3	6cr		2 ou cl3	6cm BBSG	
	SOLUTION				n +11GB	Fraisage 12 cr		
Chaussée existante Chaussée existante		Chaussée existante					aussée existante	CI

Conceptions retraitement à l'émulsion

Classification	des retraiten	nents en pla	ce				
Retraitement à	à l'émulsion	de bitume					
Caractéristique du retraitement	Teneur en liant résiduel	Module à15°C du matériau retraité en MPa	Epaisseur de la couche retraitée minimum	Epaisseur de la couche retraitée maximum	% agrégats bitumineux dans le retraitement	% matériaux blancs dans le retraitement	Trafic PL max
Classe 1a	4%	1 500	8	20	75%		750
Classe 1b	4%	2 500	8	20	75%		750
Classe II 1a	3%	2 000	5	12	90%	25%	750
Classe II 1b	3%	3 000	5	12	90%	25%	750
Classe II 2a	3%	3 000	5	12		10%	750
Classe II 2b	3%	4 000	5	12		10%	750
Classe III	2%	4 000	5	12		0%	750

RD 21 retraitement de classe refuse et l'actual de classe et l'act

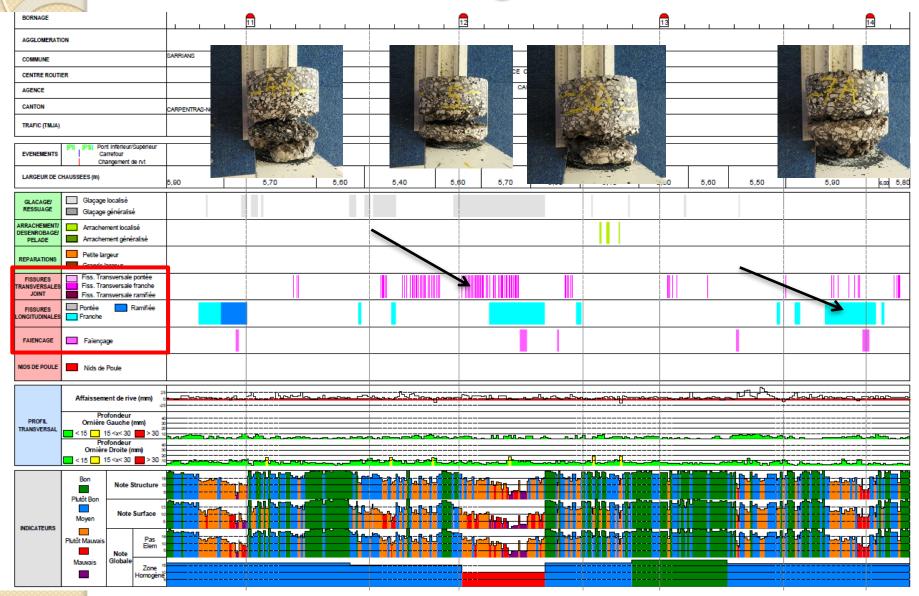
Vue détaillée	C1-0+100-V1+-axe/2_D 0+100 96mm/100 100 m	C5-1+380-V1+-axe/2_D 1+380 92mm/100 100 m	C2-2+0-V1+-axe/2_G 2+0 52mm/100 100 m	C3-2+500-V1+-axe/2_D 2+500 74mm/100 100 m	C4-2+870-V1+-axe/2_D 2+870 70mm/100 100 m
₩ Vue panoramique Tri: Coût ✓	2,5 bbtm10 (33) 4,2 bbsg-0/10-C3 (48) 2 beton-bitumineux (63)	3,8 bbtm10 (33) 5,4 bbsg-0/10-C3 (48) 1 beton-bitumineux (63)	2,6 bbtm10 (33) 6 bbsg-0/10-C3 (48) 2 beton-bitumineux (63)-	2,5 bbtm10 (33) 6,5 bbsg-0·10-C3 (46) 2 beton-bitumineus (63)	2,8 bbtm10 (33) 5,6 bbsg-0/10-C3 (48) 2 beton-bitumineux (63)
Toutes les voies V Toutes les positions V	1 es (73)	1 es (73)	1 es (73)	1 es (73)	1 es (73)
Bilan écologique 🖺 Export Résumé Pdf	30 gnt (73)		22-4-22		
Export XIs Détail		30 gnt (73)	30 gnt (73)	30 gnt (73)	30 gnt (73)
Export XIs Dommages Export Détail Pdf					
V1+-axe/2_D 2023: BB-DISCONTINU-COUCHE-MINCE (4.0 cm) 2023: retr_CIa (13.0 cm) Retraitement (25 ans retr_Cla D= 0.00 (12.%) classe 1a sur 13cm •	15 ans retr_Cla composition : 76.4 %H / 23.6 %B	15 ans retr_Cla composition : 76.9 %II / 23.1 %B	15 ans retr_CIa composition : 76.7 %N / 23.3 %B	15 ans retr_Cla composition: 77.9 %N / 22.1 %B
V1+-axe/2_D 2023: BB-DISCONTINU-COUCHE-MINCE (4.0 cm) 2023: retr_Cla (15.0 cm) 422 €/ml	28 ans retr_Cla D= 0.00 (12.%)	33 ans retr_Cla D= 0.00 (12.%)	> 50 ans retr_Cla D= 0.00 (12.%)	15 ans retr_CIa composition : 76.7 %N / 23.3 %B	> 50 ans retr_CIa D= 0.00 (12.%)
V1+-axe/2_G 2023: BB-DISCONTINU-COUCHE-HINCE (4.0 cm) 2023: retr_Cla (14.0 cm) 422 €/ml	26 ans retr_CIa D= 0.00 (12.%)	15 ans retr_Cta composition : 76.4 %H / 23.6 %B	> 50 ans retr_Cla D= 0.00 (12.%)	15 ans retr_Cta composition : 76.7 %N / 23.3 %B	15 ans retr_Cla composition : 77.9 %N / 22.1 %B
VI+-axc/2_D 2023: BB-DISCONTINU-COUCHE-MINCE (4.0 cm) 2023: retr_Cla (16.0 cm) 423 €/ml	se 1a snr 19cm +4BI	35 ans retr_CTa D= 0.00 (12:%)	> 50 ans retr_CTa D= 0.00 (12.%)	> 50 ans retr_Cla D= 0.00 (12%)	> 50 ans retr_CTa D= 0.00 (12.%)
V1+-axe/2_D 2023: BBSG-0/10-CLASSE-2 (6.0 cm) 2023: retr_Cla (16.0 cm) 443 €/ml	48 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_Cla D= 0.00 (12.%)	> 50 ans retr_Cla D= 0.00 (12.%)	> 50 ans retr_Cla D= 0.00 (12.%)
Retraitement clas	se 1a sur 16cm+6Bl	BSG			

RD 21 retraitement de classe

Conclusions

- En fonction de la stratégie du département sur les routes de cette catégorie, le laboratoire propose à la maitrise d'œuvre la solution suivante :
 - Rechargement en BBSG de classe 2 sur 6cm
 - Ou
 - Retraitement de classe II 2a sur 5cm + 6cm BBSG

• ETUDE DE LA RD 52 en continuité de la RD 21



RD 52 Relevé de dégradations de 2013 us

RD 52 classe de trafic

Trafic PL 2021: 337 PL/j dans les 2 sens

Trafic PL 2021: 168 PL/sens

Classe	e T5 T4		T3 <u>T2</u>		!	Ī	Γ 1	T	0	T	•	TEX		
Clas	15°C	15	14	T3-	T3+	T2-	T2+	T1	T1+	TO-	T0+	TS-	TS+	S
TMJA	(25 5	0	85 1	50 20	0 3	900	500 7	50 12	200 20	000 30	000 5	000

Tableau 1 - Définition des classes de trafic

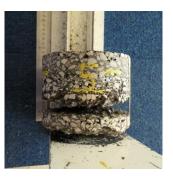
confirmer trafic PL de la RD 52

RD 52 La déflexion

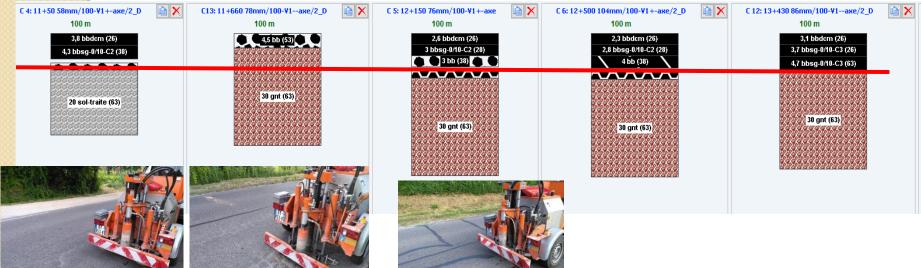
dossier :	L										
me	7 - 2 - 1			ES	SAIS D	E DEFLE	XION				
	Département		DEMANDE	UR:	ARD C	arpentras/F	Vallière				
	VAUCLUSE		Etude :		Rd 52 \	Vacquéras .	Pr 9+520	m - Pr 1	5+200 m		
			DATE:		11-juil-2	: + : + : + : + : + : - : + : + : + : + : + : + : + : + :					
Conseil Dé	épartemental . DISR						ser	ıs 1	Sen	s 2	
SPE_Lab	ooratoire						Droite	Axe	Axe	Droite	ensemble
			Nombre de m	esures :			42	42	0	20	104
			Déflexion mo	yenne en mm/	100 :		38	51	#DIV/0!	63	48
			Déflexion ma	xi en mm/100	:		82	108	0	110	110
			Déflexion min	i en mm/100 :			10	12	0	30	10
			Ecart-type				17	24	#DIV/0!	22	23
			Moyenne + 2	écarts types			71	98	#DIV/0!	106	93
	Etat de la chaussée :	Humide		Normale	v	Sèche					
	Essais effectués sur couche de	Roulement				Véhicule u	tilisé : camio	n CEER Ca	arpentras		
	Température : 25°					Poids de l'	essieu arrière	e :	13,040		Tonnes
	XXII										

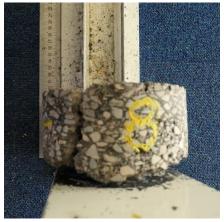
Classes de déflexion	D1	D2	D3	D4	D5	D6	D7	D8	D9
Seuils de déflexion caractéristique	de 0	de 20	de 30	de 45	de 75	de 100	de 150	de 200	≥ 300
en 1/100°mm	à 19	à 19 à 29		à 74	à 99	à 149	à 199	à 299	- 300
Niveau	Niveau global de comportem			fonction (de la class	e de trafic	<u> </u>		
T1 - T0	Bo	on	Moyen			Mauvais			
T3 - T2		Bon		Moyen		Mauvais			
T5 - T4		В	on		Moyen	Mauvais			

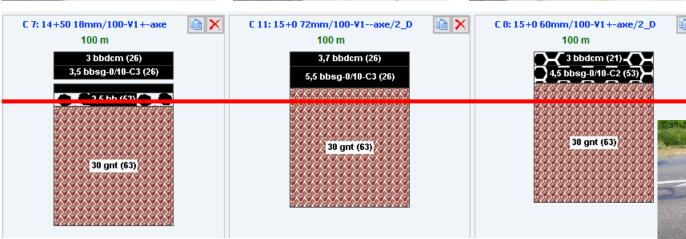
Déflexion au droit des carottages


Pr 11+015 m		500	32		
Pr 11+050 m	C4	550		58	50
		600	32		
		650		48	
		700	26		
		750		54	42
		800	24		
		850		42	
		900	28		
		950		74	66
		1000	24		
		1050		72	
		1100	18		
Pr 12-200 m		C13 1150		54	78
		1200	50		
		1250		72	
		1300	48		
Pr 12+017 m		1350		98	30
		1400	48		
		1450		26	
Pr 12+150 m	C5	1500	76		
		1550		42	88
		1600	74		
		1650		88	
		1700	34		
		1750		76	54
		1800	52		
Pr 12+500 m	C6	1850		104	
		1900	42		

RD 52 Les carottages







RD 52 Les carottages

Diagnostic C5

	Solution 1: Orniérage / / existe Hypothèse Orniérage	Fatigue	Fluage	Dégâts dus au gel	Fissuration thermique	Remontée de fissures	Drainage
	existe Section Trafic: 168. PL/jour: t2 Calage mécanique (2023) Déflexion calculée:66 mm/100 Valeur de calage:67 mm/100	fort(e)	non	non	fort(e)	x	
	bbdcm BB-DISCONTINU-COUCHE-MINCE (1997) 2.6 cm, 26 an(s), collé 1100 MPa / 2.6 cm	non	поп		fort(e)	moyen(ne)	х
	bbsg-0/10-C2 BBSG-0/10-CLASSE-2 (1995) 3 cm, 28 an(s), collé 2000 MPa / 3. cm	fort(e)			non	moyen(ne)	x
<i>(1)</i>	bb-standard Enrobé de surface (1985) cm, 38 an(s), décollé depuis 25 ans 500 MPa / 3. cm	fort(e)			moyen(ne)	non	х
	<mark>bb-standard</mark> Enrobé de surface (1970) 2 cm, 53 an(s), collé 1000 MPa / 2. cm	faible			fort(e)	non	x
•	gnt1 Matériau non traité (1960) 30 cm, 63 an(s), collé 600 MPa / 10 cm 480 MPa / 10 cm 240 MPa / 10 cm	non		х	х	x	x
	<mark>Sol</mark> 104 MPa	fort(e)	X		Х	x	х

Cahier des charges

- Durée de vie calculée ≥ 15 ans
- Pas de contrainte de gel
- Pas de contrainte de seuil : libre

Les solutions bitumineuses

C 4-11+50-V1+-axe/2_D 11+50 58mm/100 100 m	C13-11+660-V1axe/2_D 11+660 78mm/100	C 5-12+150-V1+-axe 12+150 76mm/100	C 6-12+500-V1+-axe/2_D	C 12-13+430-V1axe/2_D	C 7-14+50-V1+-axe	C 11-15+0-V1axe/2_D	C 8-15+0-V1+-axe/2
	100 m	100 m	12+500 104mm/100 100 m	13+430 86mm/100 100 m	14+50 18mm/100 100 m	15+0 72mm/100 100 m	15+0 60mm/100 100 m
3,8 bbdcm (26) 4,3 bbsg-0/10-C2 (38)	4,5 bb (63)	2,6 bbdcm (26) 3 bbsg-0/10-C2 (28) 3 bb (38)	2,3 bbdcm (26) 2,8 bbsg-0/10-C2 (28) 4 bb (38)	3,1 bbdcm (26) 3,7 bbsg-0/10-C3 (26) 4,7 bbsg-0/10-C3 (63)	3 bbdcm (26) 3,5 bbsg-0/10-C3 (26)	3,7 bbdcm (26) 5,5 bbsg-0/10-C3 (26)	3 bbdem (2 4,5 bbsg-0/10-0
V1-	V1+			V1+		VI+	V1-
20 sol-traite (63)		30 gnt (63)	V1- 30 gnt (63)	30 gnt (63)	30 gnt (63)	30 gnt (63)	30 gnt (63
201111111111111111111111111111111111111	3,55,55,55,55,55,55						

> 50 ans bbdcm D= 0.00 (12.%)	Fatigue de BB discontinu couche mince D= 21.77	4 ans BB discontinu couche mince Cisaillement	7 ans Fatigue de Sol Dommage (1)	Problème heuristique de BB discontinu couche mince Epaisseur mini si couche en dessous fissurée	9 ans BB discontinu couche mince Cisaillement	> 50 ans bbdcm D= 0.00 (12.%)	18 ans bbdcm D= 0.08 (12.
> 50 ans bbsg-0/10-C2 D= 0.02 (12.%)	Fatigue de bbsg-0/10-C2 D= 24.69	5 ans Fatigue de bbsg-0/10-C2 D= 2.77	12 ans Fatigue de Sol Dommage (1)	> 50 ans bbsg-0/10-C2 D= 0.00 (12.%)	12 ans Fatigue de bbsg-0/10-C2 D= 1.23	49 ans bbsg-0/10-C2 D = 0.14 (12.%)	20 ans bbsg-0/10-C2 D= 0.57 (
> 50 ans gb-0/14-C3 D= 0.07 (12.%)	7 ans Fatigue de gb-0/14-C3 D= 2.15	15 ans gb-0/14-C3 D= 1.07 (12.%)	24 ans gb-0/14-C3 D= 0.59 (12.%)	> 50 ans gb-0/14-C3 D= 0.00 (12-%)	41 ans gb-0/14-C3 D= 0.32 (12.%)	> 50 ans gb-0/14-C3 D= 0.12 (12.%)	> 50 ans gb-0/14-C3 D= 0.25 (1
> 50 ans gb-0/14-C3 D= 0.05 (12.%)	15 ans gb-0/14-C3 D= 1.06 (12.%)	25 ans gb-0/14-C3 D= 0.57 (12.%)	35 ans gb-0/14-C3 D= 0.39 (12.%)	> 50 ans gb-0/14-C3 D= 0.00 (12.%)	> 50 ans gb-0/14-C3 D= 0.18 (12.%)	> 50 ans gb-0/14-C3 D= 0.09 (12.%)	> 50 ans gb-0/14-C3 D= 0.15 (1
	> 50 ans bbdcm D= 0.00 (12.%) > 50 ans bbsg-0/10-C2 D= 0.02 (12.%) > 50 ans gb-0/14-C3 D= 0.07 (12.%)	1,3 bbsg-0/10-C2 (35) 20 sol-traite (63) 20 sol-traite (63) 21 30 gnt (63) 21 30	VI 20 sol-traite (63) 330 grt (63) VI VI 20 sol-traite (63) 330 grt (63) 330 grt (63) 330 grt (63) 330 grt (63) 20 sol-traite (63) 20 sol	A 3 bbsg 0.70 C2 (33)	13 opt (63) 13 opt (63) 14 opt (63) 15 opt (63)	1 1 2 2 2 2 2 2 2 2	12 20 20 20 20 20 20 20

Conceptions retraitement à l'émulsion

Classification	des retraiten	nents en pla	ce				
Retraitement a	à l'émulsion	de bitume					
Caractéristique du retraitement	Teneur en liant résiduel	Module à15°C du matériau retraité en MPa	Epaisseur de la couche retraitée minimum	Epaisseur de la couche retraitée maximum	% agrégats bitumineux dans le retraitement	% matériaux blancs dans le retraitement	Trafic PL max
Classe 1a	4%	1 500	8	20	75%		750
Classe 1b	4%	2 500	8	20	75%		750
Classe II 1a	3%	2 000	5	12	90%	25%	750
Classe II 1b	3%	3 000	5	12	90%	25%	750
Classe II 2a	3%	3 000	5	12		10%	750
Classe II 2b	3%	4 000	5	12		10%	750
Classe III	2%	4 000	5	12		0%	750

Les solutions retraitement à l'émulsion Classe I

CI 1: 4%teneur en liant, 75%maxi agrégats d'enrobés

Vue détaillée	C 4-11+50-V1+-axe/2_D 11+50 58mm/100 100 m	C13-11+660-V1axe/2_D 11+660 78mm/100 100 m	C 5-12+150-V1+-axe 12+150 76mm/100 100 m	C 6-12+500-V1+-axe/2_D 12+500 104mm/100 100 m	C 12-13+430-V1axe/2_D 13+430 86mm/100 100 m	C 7-14+50-V1+-axe 14+50 18mm/100 100 m	C 11-15+0-V1axe/2_D 15+0 72mm/100 100 m	C 8-15+0-V1+-axe/2_D 15+0 60mm/100 100 m	
₩ Vue panoramique Tri: Coût ✓	3,8 bbdcm (26) 4,3 bbsg-0/10-C2 (38)	4,5 bb (53)	2,6 bbdcm (26) 3 bbsg-0/10-C2 (28) 3 bb (38)	2,3 bbdcm (26) 2,8 bbsg-0/10-C2 (28) 4 bb (38)	3,1 bbdcm (26) 3,7 bbsg-0/10-C3 (26) 4,7 bbsg-0/10-C3 (63)	3 bbdcm (26) 3,5 bbsg-0/10-C3 (26)	3,7 bbdcm (26) 5,5 bbsg-0/10-C3 (26)	3 bbdcm (21)- 4,5 bbsg-0/10-C2 (53)	
Toutes les voies	VI-	V1+				2,5 bb (53)	V1+	V1-	
Bilan écologique 🖺 Export Résumé Pdf	20 sol-traite (63)	30 gnt (63)	V1-	V1-	V1+	V1-	V1+ 30 gnt (63)	30 gnt (63)	
Export XIs Détail	566666666666666666666666666666666666666		30 gnt (63)	30 gnt (63)		30 gnt (63)			
Export XIs Dommages Sexport Détail Pdf									
V1+-axe/2_D 2023: BBSG-0/10-CLASSE-2 (6.0 cm) 2023: retr_Cla (10.0 cm) 413 €/ml	15 ans retr_Cla composition : 75.7 %N / 24.3 %B	> 50 ans retr_CIa D= 0.00 (12.%)	15 ans retr_Cla composition : 75.7 %N / 24.3 %B	15 ans retr_Cla composition : 79.3 %N / 20.7 %B	15 ans retr_Cla composition : 76.7 %N / 23,3 %B	15 ans retr_Cla composition : 80.0 %N / 20.0 %B	15 ans retr_Cla composition : 76.7 %N / 23.3 %B	> 50 ans retr_CIa D= 0.00 (12.%)	
V1axe/2_0 2023: BBSG-0/10-CLASSE-2 (6.0 cm) 2023: retr_Cla (13.0 cm) 414 €/ml	15 ans retr_Cla composition : 75.7 %N / 24.3 %B	> 50 ans retr_CIa D= 0.00 (12.%)	15 ans retr_Cla composition : 75.7 %N / 24.3 %B	15 ans retr_CIa composition : 79.3 %N / 20.7 %B	15 ans retr_Cla composition : 76.7 %N / 23.3 %B	15 ans retr_CIa composition : 80.0 %N / 20.0 %B	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	
V1+-axe/2_0+V1+-axe 2023: BBSG-0/10-CLASSE-2 (6.0 cm) 2023: retr_Cta (15.0 cm) Retrait C1a 15+6	> 50 ans retr_Cla D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	15 ans retr_Cla composition : 76.7 %N / 23.3 %B	15 ans retr_C1a composition : 80.0 %N / 20.0 %t	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	
V1axe/2_D + V1+-axe 2023: BB5G-0/10-CLASSE-2 (6.0 cm)									
2023: retr_CIa (16.0 cm)	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	> 50 ans retr_CIa D= 0.00 (12.%)	
Reträitement C1a :16cm +6BBSG									

Les solutions retraitement à l'émulsion Classe II

Classe II 3% teneur en liant, 90% agrégats enrobés pour CL II 1a et 1b

Vue détaillée	C 4-11+50-V1+-axe/2_D 11+50 58mm/100 100 m	C13-11+660-V1axe/2_D 11+660 78mm/100 100 m	C 5-12+150-V1+-axe 12+150 76mm/100 100 m	C 6-12+500-V1+-axe/2_D 12+500 104mm/100 100 m	C 12-13+430-V1axe/2_D 13+430 86mm/100 100 m	C 7-14+50-V1+-axe 14+50 18mm/100 100 m	C 11-15+0-V1axe/2_D 15+0 72mm/100 100 m	C 8-15+0-V1+-axe/2_D 15+0 60mm/100 100 m		
Vue panoramique Tri: Coût	3,8 bbdcm (26) 4,3 bbsg-0/10-C2 (38)	4,5 bb (53)	2,6 bbdcm (26) 3 bbsg-0/10-C2 (28) 3 bb (38)	2,3 bbdcm (26) 2,8 bbsg-0/10-C2 (28) 4 bb (38)	3,1 bbdcm (26) 3,7 bbsg-0/10-C3 (26) 4,7 bbsg-0/10-C3 (63)	3 bbdcm (26) 3,5 bbsg-0/10-C3 (26)	3,7 bbdcm (26) 5,5 bbsg-0/10-C3 (26)	3 bbdcm (21) 4,5 bbsg-0/10-C2 (53)		
Toutes les voies Toutes les positions	V1-	V1+		~~~~	V1+	2,5 bb (53)	V1+	V1-		
Bilan écologique Export Résumé Pdf	20 sol-traite (63)		V1- 30 gnt (63)	V1- 30 gnt (63)	30 gnt (63)	VI- 30 gnt (63)	30 gnt (63)	30 gnt (63)		
Export XIs Détail Export Synthèse Pdf				Se gir (63)						
Export XIs Dommages Export Détail Pdf										
V1+-axe/2_D 2023: B=DISCONTINU-COUCHE-MINCE (4.0 cm) 2023: retr_CII2a (10.0 cm) 398 €/ml	> 50 ans retr_CII2a D= 0.01 (12.%)	15 ans retr_CII2a composition : 45.0 %N / 55.0 %B	> 50 ans retr_CII2a D= 0.00 (12.%)	> 50 ans retr_CII2a D= 0.00 (12.%)	47 ans retr_CII2a D= 0.00 (12.%)	> 50 ans retr_CII2a D= 0.00 (12.%)	> 50 ans retr_CII2a D= 0.00 (12.%)	15 ans retr_CII2a composition : 75.0 %N / 25.0 %B		
V1+-axe/2_D + V1+-axe + V1axe/2_D 2023: BBSG-0/10-CLASSE-3 (6.0 cm) 2023: retr_CII2a (5.0 cm) 410 €/ml	> 50 ans retr_CII2a D= 0.00 (12.%)	> 50 ans retr_CII2a D= 0.02 (12.%)	32 ans retr_CII2a D= 0.02 (12.%)	14 ans Fatigue de Sol Dommage (1)	> 50 ans retr_CII2a D= 0.00 (12.%)	> 50 ans retr_CII2a D= 0.00 (12.%)	> 50 ans retr_CII2a D= 0.00 (12.%)	> 50 ans retr_CII2a D= 0.00 (12.%)		
V1axe/2_D 2023: BBSG-0/10-CLASSE-3 (6.0 cm) 2023: retr_CIIIa (5.0 cm) 410 €/ml	15 ans retr_CII1a composition: 96.4 %N / 3.6 %B	18 ans retr_CII1a D= 0.01 (12.%)	14 ans retr_CII1a composition : 96.4 %N / 3.6 %B	13 ans retr_CII1a composition : 100.0 %N / 0.0 %B	15 ans retr_CIIIa composition : 100.0 %N / 0.0 %B	15 ans retr_CII1a composition: 100.0 %N / 0.0 %B	15 ans retr_CII1a composition: 92.0 %N / 8.0 %B	15 ans retr_CIIIa composition: 93.8 %N / 6.2 %B		
V1+-axe/2_D 2023: BBSG-0/10-CLASSE-3 (6.0 cm) 2023: retr_CII2b (5.0 cm)	> 50 ans retr_CII2b D= 0.00 (12.%)	> 50 ans retr_CII2b D= 0.02 (12.%)	36 ans retr_CII2b D= 0.02 (12.%)	15 ans retr_CII2b D= 0.01 (12.%)	> 50 ans retr_CII2b D= 0.00 (12.%)	> 50 ans retr_CII2b D= 0.00 (12.%)	> 50 ans retr_CII2b D= 0.00 (12.%)	> 50 ans retr_CII2b D= 0.00 (12.%)		
Retrait CI II 2b sur 5cm +6BBSG										

Conclusions RD 52

- En fonction de la stratégie du département sur les routes de cette catégorie, le laboratoire propose à la maitrise d'œuvre la solution suivante :
 - Rechargement en GB sur 8cm et revêtement BBSG de classe 2 sur 6cm
 - Ou
 - Retraitement de classe II 2b sur 5cm + 6cm BBSG

Conclusions sur l'étude de l'itinéraire RD21 et RD 52

- Une solution est commune aux 2 RD
- Le retraitement de classe II
- RD 21 : Retraitement de classe II 2a sur 5cm + 6cm BBSG
- RD 52 : Retraitement de classe II 2b sur 5cm + 6cm BBSG

Merci de votre attention

