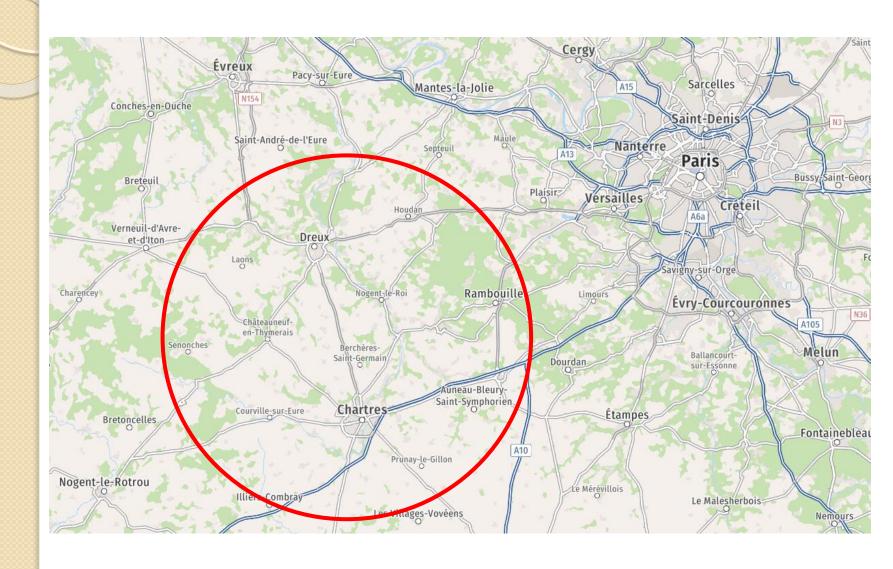


ERASMUS

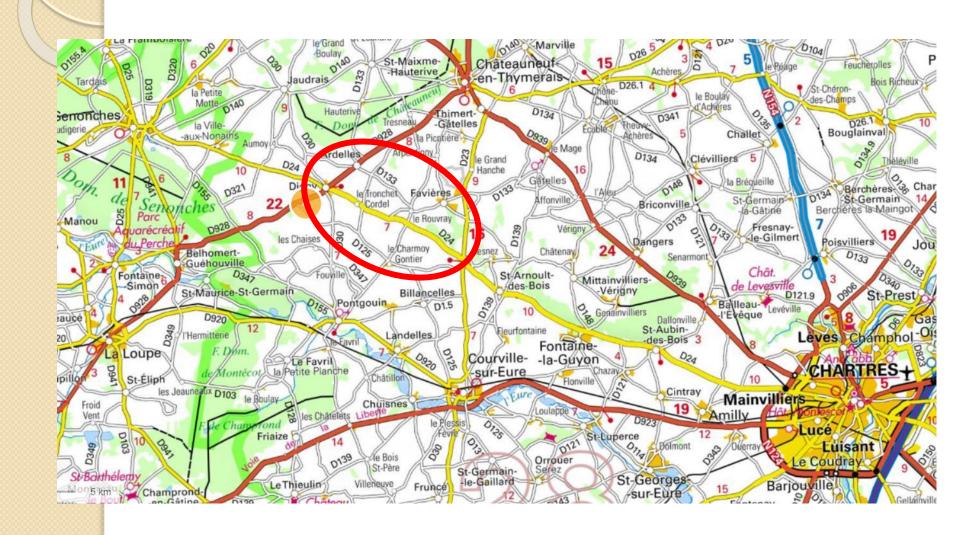
Etude d'entretien d'une chaussée en grave composite (trafic T3)

décembre 2024



CAS DE LA RD 24

DÉPARTEMENT D'EURE ET LOIR


ERASMUS Système expert pour les chaussées

Situation

Situation de l'étude

La RD 24

- Chaussée 2 voies
- Largeur de chaussée : 6,60 m
- Section de 6600 m

 Objectifs: dans le cadre du budget très contraint de 2025, définir la solution d'entretien optimale pour les durées de vie 15ans et 20 ans

Objectif:

Définir la solution d'entretien optimale pour des durées de vie de 15 et 20 ans.

Compte tenu de notre budget, du linéaire de la section et du niveau des déflexions, l'idée est de mettre un BBM ou un BBSG après traitement des Fissures Transversales et d'éventuelles purges localisées.

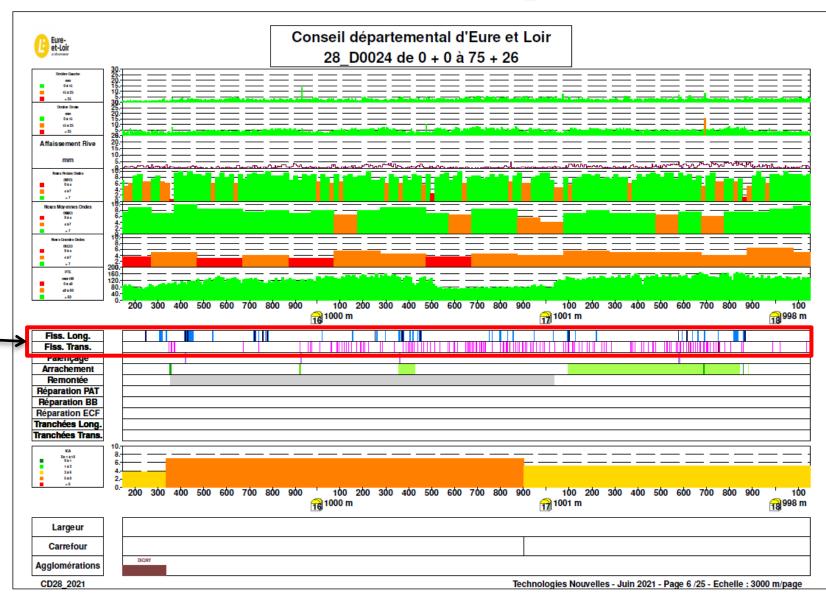
RD 24 Trafic PL

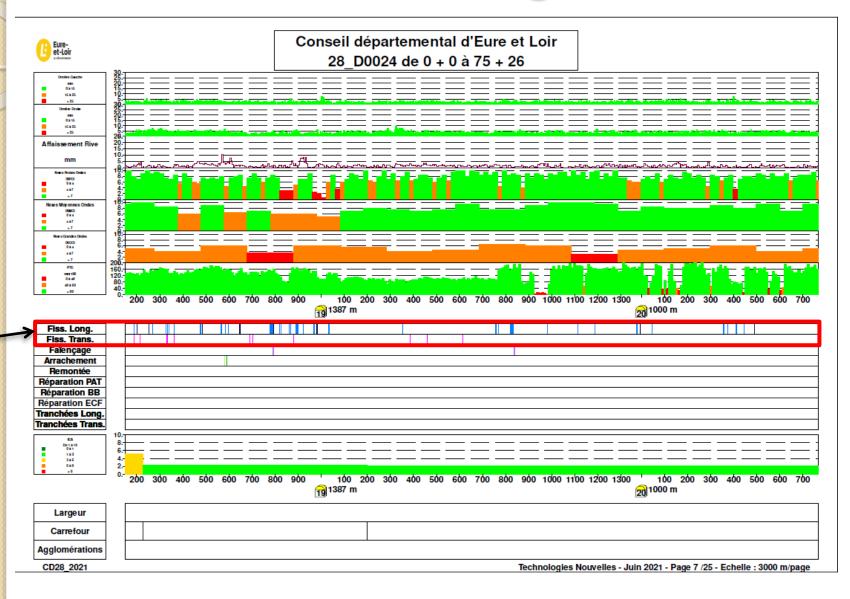
- Mesuré en 2023: 160 PL/j dans les 2 sens
- 50 % du trafic PL sens +: 80 Pl/j
- 50% du trafic PL sens : 80 Pl/j

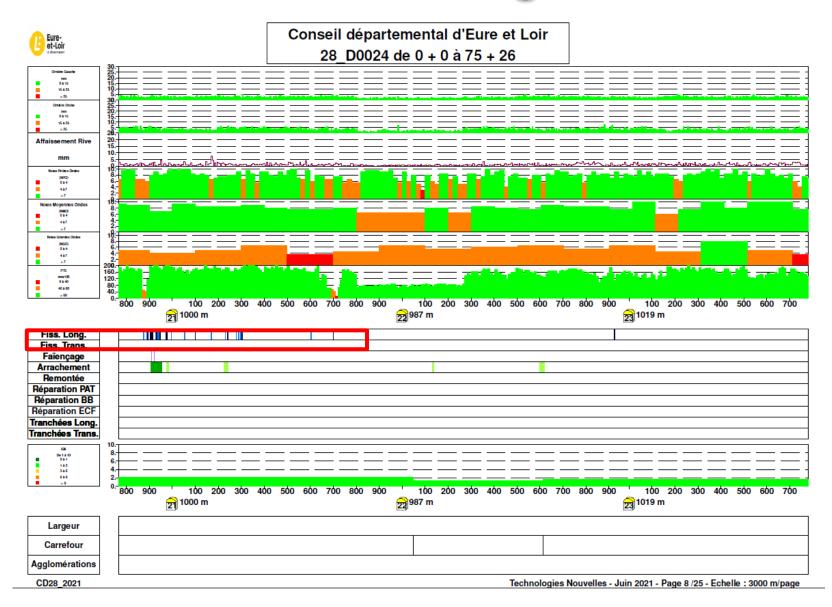
Г	Classe		T5	14		T3		T2		T1		TO		TS		TEV
			13	14	T3-	-	T3+	T2-	T2+	T1-	T1+	T0-	T0+	TS-	TS+	TEX
ī	MJA		0	25	0	85	1	50 2	200 3	800	500 7	50 13	200 20	000 30	000 5	000

RD 24 section PR 15 à 22

Google






RD 24 Relevé de dégradations

RD 24 Relevé de dégradation AL MAN DE LA Relevé de dégradation RA LA RELEVE DE LA R

RD 24 Relevé de dégradations

Les dégradations

- Fissures transversales (IFT tous les 10m entre les PR 16 et 18)
- Fissures longitudinales
- Très peu de faïençage en bande roulement et hors bande roulement
- Pas d'orniérage
- Enduit superficiel qui commence à se dégrader

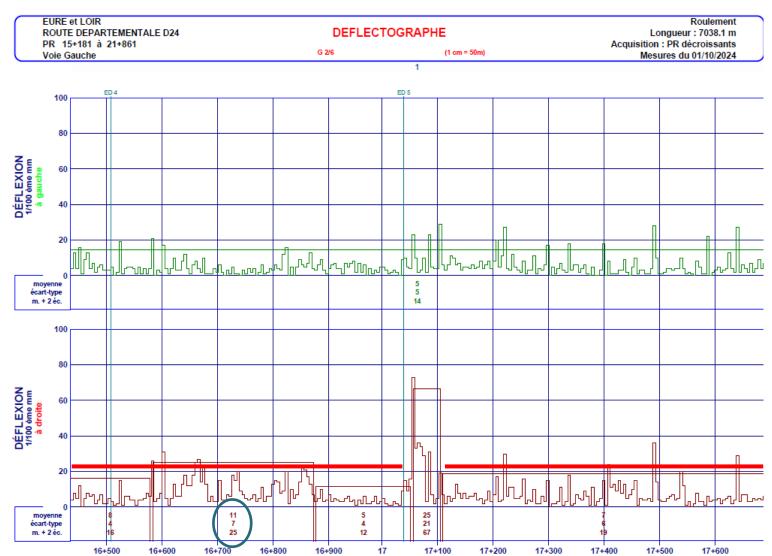
Déflexion PR 15+180 à 21+861

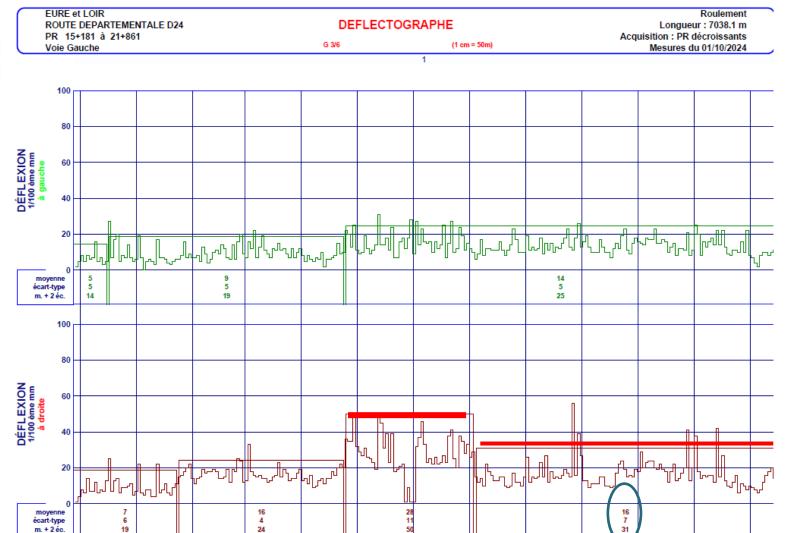
- Réalisée en octobre 2024 (CEREMA)
- Type d'appareil : déflectographe Lacroix chassis long

Mesures sens + et sens -

Cerem

7 avc abed - 5707/01/8/


DUTE		ARTEMEN		D24			DEF	LECTOGR	APHE			Acau	Longueu	Roulement r : 7038.1 m écroissants	
							G 1/6			50m)		rioqu			
									1						
100	Е	0 1	E	ED 3							•				
80															
60															
-															
40															
20			l _G ,												
	\vdash	لمح ا	<u>hr 54</u>		Pu		2	<u></u>			пП				П
0	71	~~~		$\frac{1}{1}$	┡╌╟┦╶┞┤┌╌	╌ぴ╟┤	ru -1 ru		الربيم إحرارا		╌╌┖	┷┦┖┷┙┖ _┰ ┛╏			עלע
nne ype									5 5						
éc.	Щ.								14						
100	Щ														
80															
60				+											
40		П	l l	411											
20				L _d				П	п						
		[{ \/ /		Į.	hallan _{in} ^t ~a				\				^~\ 		h
nne ype éc		14 10 34	4	16 5						8 4	"			<u>.</u>	
	100 80 60 40 20 0 nnee	100 80 60 40 40 40 40 40 40 40 40 40 40 40 40 40	100 ED 1 80 60 40 20 100 80 60 40 40 20 40 40 40 40 40 40 4	100 ED 1 E	100 ED 1 E0ED 3 80 40 40 20 40 40 40 40 40 40 4	100 ED 1 ECC 0 3 80 40 40 40 40 40 40 40 40 40 40 40 40 40	100 ED 1 ERED 3 60 40 40 40 40 40 40 40 40 40 40 40 40 40	8 15+181 à 21+861 sie Gauche ED 1 EDD 1 EDD 3 60 40 40 20 100 80 60 40 40 40 40 40 40 40 40 4	100 ED 1 END 3 100 PD 1 END 3	8 15+181 à 21+861 ile Gauche Gué (1 cm = 1)	R 15+181 à 21+861 ide Gauche G 1/6 (1 cm = 50m) 100 20 40 40 20 40 40 40 40 40	R 15+181 à 21+861 ille Gauche G 116 (1 cm = 50m)	R 15-181 à 21-961 100 100 100 100 100 100 100	R 15-181 à 21-861 100 100 100 100 100 100 100	Resurse du 0110/2024



· 09/10/2024 · page 5/47

RD 24 déflexion sens +

· 09/10/2024 · page 7/47

17+700

17+800

17+900

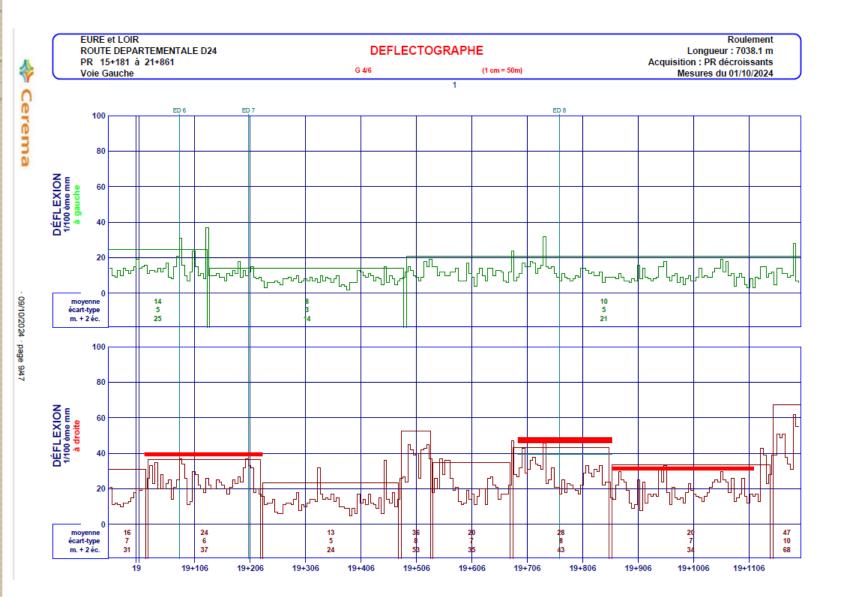
18+100

18+200

18+300

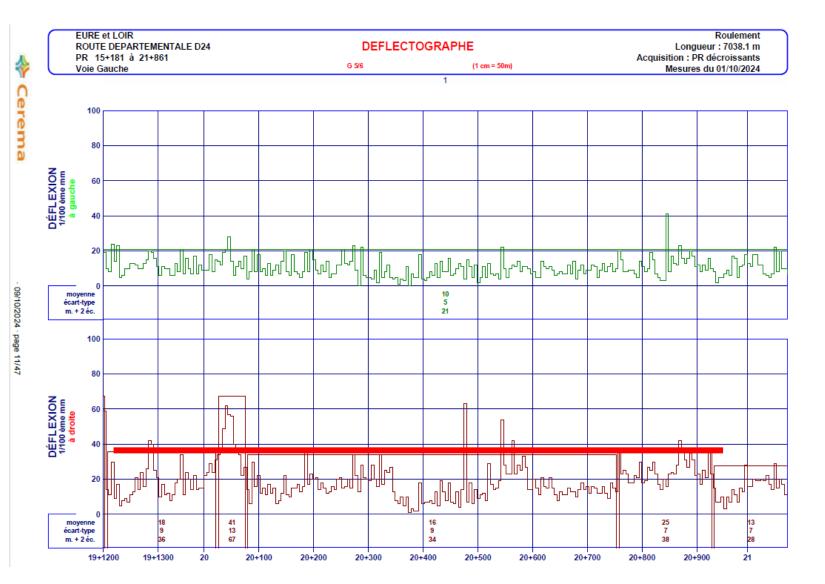
18+400

18+500


18+600

18+800

18+900



RD 24 déflexion sens +

RD 24 déflexion sens +

RD 24

- Sens +
 - Déflexion de 25/100 sur les 2500 premiers mètres
 - Déflexion de 45/100 sur la section PR17+800 à 21
 - Valeurs proches de 20/100 en BdR droite

- Sens
 - On observe des valeurs globalement similaires

RD 24 les carottages

Implantés en fonction des déflexions et des dégradations

Technicien:

COUPE DE CAROTTAGE

Entreprise : CONSEIL DEPARTEMENTAL D'EURE ET LOIRE Météo : Soleil

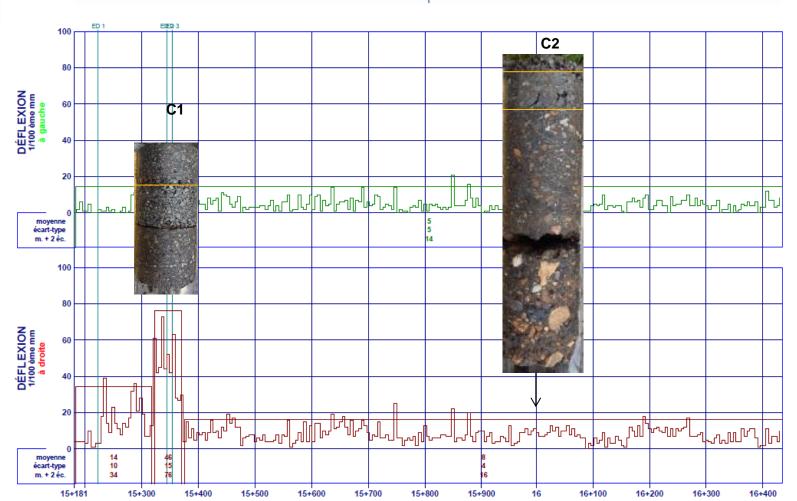
Chantier : RD24 - DIGNY ST AUBIN DES BOIS (28) Localisation : PR 15+330

Destinataire : Maxime PICQ Moyen utilisé : Carotteuse routière Ø 150 mm

 Dossier affaire:
 2024 0037 ES
 NGF:
 Chaussée actuelle

 N° échantillon:
 C1
 Date:
 05/11/2024

Matériau	N.	200	2 V H2 111	Photo-marking		
Nature	Epaisseur (cm)	Etat	Interface	Photographie		
BBSG 0/10	8,0	Bon	Collée	A Translation of the second		
BBSG 0/10	9,0	Bon	Non collée			
BBSG 0/10	7,0	Bon	Collée	And the second s		
BBSG 0/10	4,0	Bon		CI		
				CBTP:		
				[FJ-135-VS]		
	Nature BBSG 0/10 BBSG 0/10 BBSG 0/10	BBSG 0/10 8,0 BBSG 0/10 9,0 BBSG 0/10 7,0	Nature Epaisseur (cm) Etat BBSG 0/10 8,0 Bon BBSG 0/10 9,0 Bon BBSG 0/10 7,0 Bon	Nature Epaisseur (cm) Etat Interface BBSG 0/10 8,0 Bon Collée BBSG 0/10 9,0 Bon Non collée BBSG 0/10 7,0 Bon Collée		



 EURE et LOIR
 Roulement

 ROUTE DEPARTEMENTALE D24
 DEFLECTOGRAPHE
 Longueur : 7038.1 m

 PR 15+181 à 21+861
 Acquisition : PR décroissants

 Voie Gauche
 G 1/6
 (1 cm = 50m)
 Mesures du 01/10/2024

ERASMUS

Roulement

RD 24 sens +

16+900

12

17

25

16+800

16+700

25 21

67

17+100

17+200

17+300

17+400

17+500

17+600

EURE et LOIR

· 09/10/2024 · page 5/47

écart-type

m. + 2 éc.

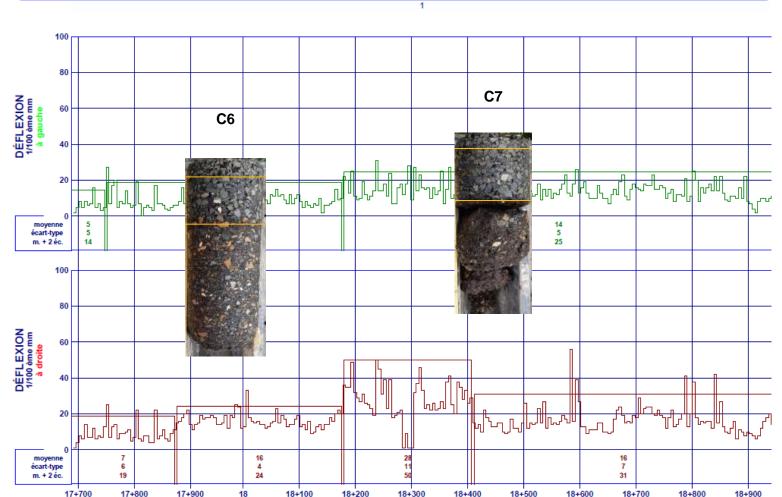
16+500

16+600

EURE et LOIR

ROUTE DEPARTEMENTALE D24

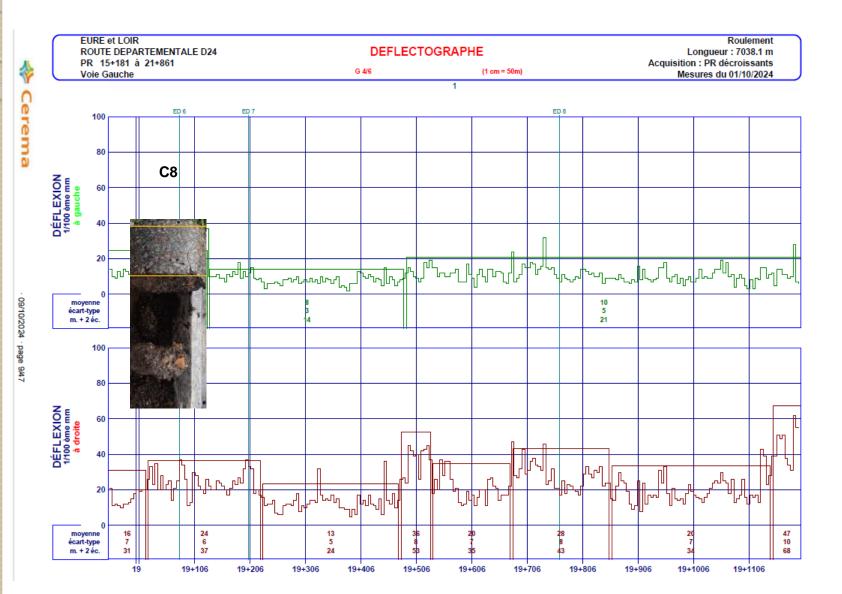
PR 15+181 à 21+861


Voie Gauche

DEFLECTOGRAPHE

Longueur : 7038.1 m

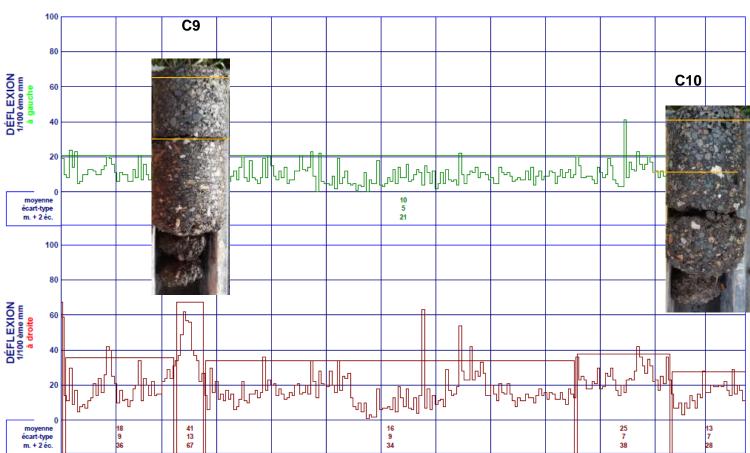
Acquisition : PR décroissants


Mesures du 01/10/2024

· 09/10/2024 · page 7/47

09/10/2024 · page 11/47

19+1200


19+1300

20+100

20+200

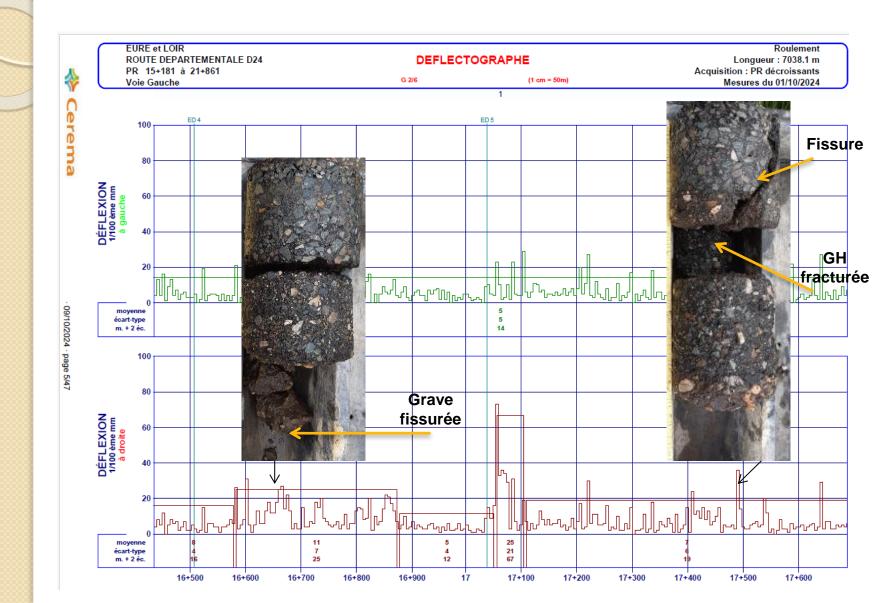
EURE et LOIR
ROUTE DEPARTEMENTALE D24
PR 15+181 à 21+861
Voie Gauche

DEFLECTOGRAPHE
Longueur : 7038.1 m
Acquisition : PR décroissants
Mesures du 01/10/2024

20+400

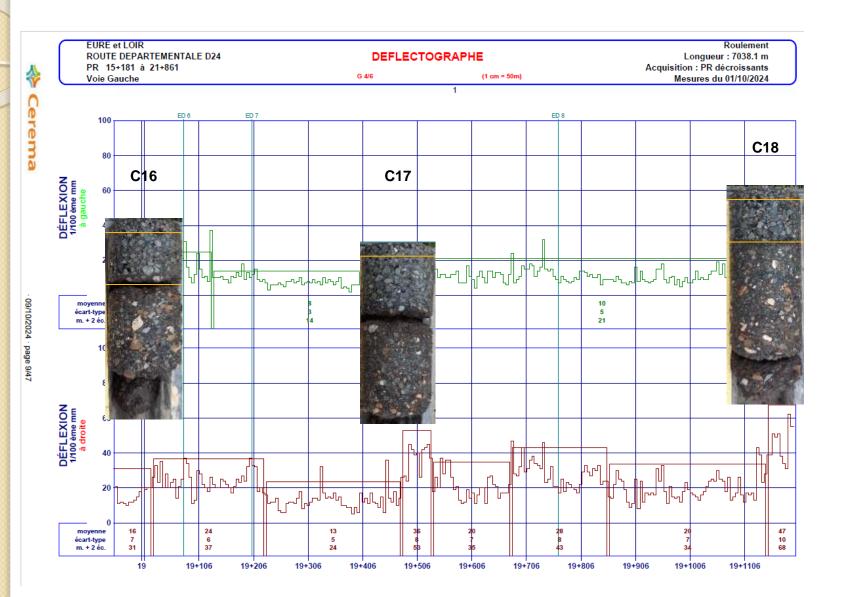
20+500

20+600


20+700

20+800

20+900


20+300

RD 24 sens - PR 16 +500 à 17+500 ASMUS

ERASMUS

RD 24 sens - PR 19

Etape : Vérification des matériaux et des épaisseurs : exemple C3

Profondeur	Matériau		Etat	Interface	Photographie			
(cm)	Nature	Epaisseur (cm)	Liai	Interface	Filotograpine			
2 4 6 8 10	BBSG 0/10	10,0	Bon	Collée				
12 14 16 18 20 22	GB 0/14	12,0	Bon	Collée				
24	BBSG 0/10	4,0	Bon	Non collèe	Ca			
28 30 32 34 36 38	GB 0/14	12,0	Bon	Collée				

Etape : Vérification des matériaux et sons des épaisseurs : exemple C3

Avant saisie des carottages dans Erasmus

Base de données du département

ARCOPOLE ressort les éléments suivants :

- Couche de fondation traitement en grave Ertalh (grave traitée 0/20 à base d'agrégats d'enrobés de la société EIFFAGE) :
- Couche de surface :
 - BBTM avec élastomère sur 4cm fait en 2003 sur toute la section
 - ESU fait en 2015 du PR15+334 au PR16+505
 - ESU fait en 2015 du PR17+026 au PR19+076
 - ECF fait en 2018 du PR19+076 au PR19+553
 - ESU fait en 2018 du PR19+770 au PR21+800

Grave composite ERTALH

Ertalh®

Matériau d'assise de chaussée

Ertalh® est une grave traitée 0/20 à base d'agrégats d'enrobés concassés et criblés, d'un sable correcteur granulométrique et d'un liant hydraulique.

Le matériau obtenu présente un comportement mixte avec des performances en résistance comparables aux graves hydrauliques, un module plus faible, ce qui en fait un matériau doté d'un meilleur indice de qualité élastique.

PERFORMANCES

La grave ERTALH® est obtenue à partir d'un mélange d'agrégats 0/20 issus du concassage et du criblage d'enrobés recyclés, de sable 0/2 et de liant spécial routier.

FABRICATION ET MISE EN ŒUVRE

La fabrication - mélange des agrégats d'enrobés, du sable correcteur et du liant hydraulique - et la mise en œuvre, peuvent se faire :

- en centrale de malaxage avec répandage classique à la niveleuse ou au finisseur,
- en place grâce à l'ARC 700® ou l'ARC 1000®. ERTALH® est recyclable.

Grave composite ERTALH

Recyclage Chaussées pour trafic lourd

AUTEURS

Mai-Lan Nguyen Chargé de recherche IESTIAR

Jean-Maurice Balay Directeur de recherche Institut français des sciences et technologies de transport, de l'aménagement et des réseaux (IFSTTAR)

François Olard Responsable de la recherche et de l'innovation EIFFAGE Travaux Publics

Cédric Sauzéat Enseignant-chercheur

Hervé Di Benedetto Professeur Ecole nationale des travaux publics de l'Etat (ENTPE)

Benoît Ficheroulle Gérant Chaussées Technique Innovation (CTI)

Le manège de fatigue de l'IFSTTAR et vue de la construction des structures Recyroute IFSTTAR fatigue test track and view of construction of Recyroute structures

L'expérience Recyroute sur le manège de fatigue de l'IFSTTAR

Recyroute est un projet ANR (Agence nationale de la recherche) visant à évaluer l'emploi comme matériau de chaussées à fort trafic, du béton hydraulique à base d'agrégats neufs ou de fraisats bitumineux, incluant des fibres métalliques et compacté au rouleau, le FRCC® (Fiber reinforced Roller Compacted Concrete). Dans ce cadre, une expérience en vraie grandeur sous trafic accéléré a été réalisée sur le manège de fatigue des chaussées de l'IFSTTAR. Huit structures ont été testées sous charges lourdes : trois structures en FRCC® à base de granulats neufs, trois structures en FRCC® à base de fraisats bitumineux, une structure non fibrée en grave ERTALH® (enrobés recyclés traités au liant hydraulique) développée par EIFFAGE Travaux Publics et une structure bitumineuse en EME2 (enrobé à module élevé de classe 2). Ce premier article décrit le déroulement et les apports de l'expérimentation, dont l'interprétation conduit à proposer des valeurs pour les paramètres de dimensionnement des structures utilisant les matériaux composites testés. Un second article à paraître dans RGRA présentera les autres travaux de Recyroute, en particulier le suivi de chantiers pilotes et un programme très complet de caractérisation mécanique des matériaux en laboratoire.

Revue générale des l'aménagement

Dossier L'accessibilité et le mieux vivre ensemble : études, normalisation, réalisations | Eclairage Le lampadaire solaire en ville | Recyclage Chaussées pour trafic lourd |

Grave composite ERTALH

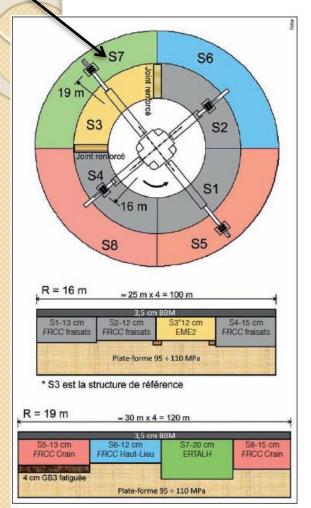


Figure 1
Composition des structures expérimentales et disposition sur le manège de fatigue (les épaisseurs sont les épaisseurs nominales de dimensionnement)
Composition of experimental structures and setting on fatigue test track (thicknesses are nominal design thicknesses)

- FRCC® neuf, d'épaisseurs respectives 13 cm (S5) et 15 cm (S8) en calcaire tendre de Crain, et 12 cm (S6) en calcaire dur de Haut-Lieu;
- grave ERTALH®, d'épaisseur 20 cm (S7);
- EME2, d'épaisseur 12 cm (structure témoin S3).

Les structures sont revêtues de 3,5 cm de béton bitumineux mince (BBM) au bitume pur 35/50, excepté celles en FRCC® neuf (S5, S6 et S8), revêtues d'un BBM à base de bitume fortement modifié en polymère (Orthoprène®).

Les compositions des matériaux sont données dans le tableau 1.

Les dosages en liant sont les valeurs moyennes pratiquées sur les chantiers réels, variant pour la grave ERTALH® entre 4 et 6 % environ et pour les FRCC® neuf et fraisats entre 11 et 13 %. La portance du massif support varie entre 95 et 110 MPa.

Les structures sont construites par l'agence d'Ancenis de l'entreprise EIFFAGE Travaux Publics. Une centrale mobile continue SAE fabrique sur place les matériaux FRCC® et ERTALH®. Le doseur de fibres de la société CTI installé sur la centrale assure l'alimentation en continu des fibres dans le malaxeur. Les matériaux sont mis en œuvre au finisseur.

Matériaux	FRCC Haut-Lieu	FRCC Crain	FRCC fraisats	Grave ERTALH
Sable alluvionnaire Gurgy 0/4	23 %	23 %	18 %	1
Gravillon 0/6,3	35 %	35 %	1	25 %
Gravillon 6,3/14	30 %	30 %	1	- 1
Fraisat enrobés Touraine 0/14	0	0	70 %	70 %
Liant Ligex FPL2	12 %	12 %	12 %	5 %
Plastifiant Sika	0,5 %	0,5 %	0,5 %	1
Teneur en eau*	5,5 %	6,0 %	6,1 %	6,1 %
Fibres métalliques haute résistance**	30 kg/m³	30 kg/m³	20 kg/m³	- 1

^{*} Teneur en eau volumique rapportée aux granulats

Tableau 1 Composition des matériaux FRCC® et ERTALH® Composition of FRCC® and ERTALH® materials

Matériaux	Module E 15 °C, 10Hz (MPa)	ε ₆ (μ def) ou σ ₆ (MPa)	-1/b	S _N	S _h (m)	k _d	k _c
EME2	14 000	130	5	0,25	0,01	1	1
ERTALH	10 260	0,68	10,7	1	0,02	1	1,4
FRCC neuf	35 000	2,47	16	1	0,02	0,855	1,5
FRCC fraisats	12 000	1,26	9,9	0,46	0,02	1	1,5

Les notations sont celles du guide Conception et dimensionnement des chaussées [5] et de la norme NF P98-086 [6]

Tableau 2

Paramètres mécaniques des matériaux pour le dimensionnement des structures expérimentales

Mechanical parameters of materials for design of experimental structures

Composition du matériau

Paramètres mécaniques du matériau

Déroulement de l'expérience

Les 2 millions de chargements par le jumelage standard de 65 kN ont été effectués entre janvier et septembre 2010. Puis 150 000 passages en surcharge (75 kN sur jumelage) ont été réalisés avec l'objectif d'atteindre des niveaux de dégradation significatifs des structures non encore endommagées. La vitesse de rotation du manège en régime courant est de 10 tours/min, soit 60,3 km/h au rayon 16 m et de 71,6 km/h au rayon 19 m. Le manège reproduit le balayage transversal du trafic poids lourds réel, d'écart type proche de 0,20 m, au moyen d'une variation continue des rayons de giration des charges par rapport aux rayons moyens de 16 et 19 m.

Durant les rotations, la température moyenne dans les différentes couches de base reste comprise entre + 2 °C et + 40 °C, représentative du climat océanique nantais. En revanche, les précipitations sur la durée de l'expérience sont inférieures aux moyennes statistiques pour cette région.

^{**} Fibres Dramix® RC-80/60-BN de Bekaert : 60 mm de longueur et 0,75 mm de diamètre, avec des extrémités de forme d'ancrage

Matériaux	Module E 15 °C, 10 Hz (MPA)	σ ₆ (MPa)	-1/b	S _N	S _h (m)	k _c	1/k H1	K _d H2
ERTALH	10 000	0,82	10,7	1	0,02	1,4	1	
FRCC fraisats	12 000	1,75	12,4	1	0,02	1,5	1,21	1,29

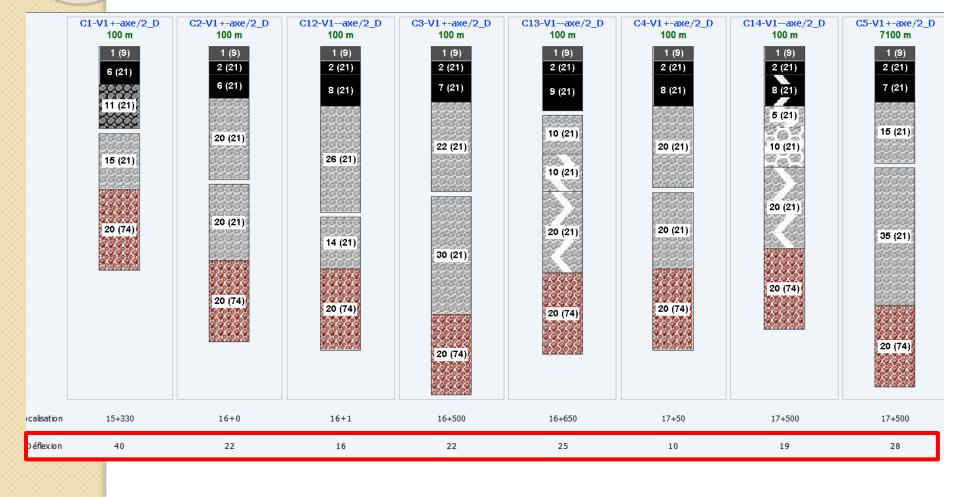
H1 : hypothèse de fonctionnement continu de la structure associé à un contrôle complet de la fissuration

H2: hypothèse de fonctionnement discontinu associé à une fissuration ouverte

Tableau 5

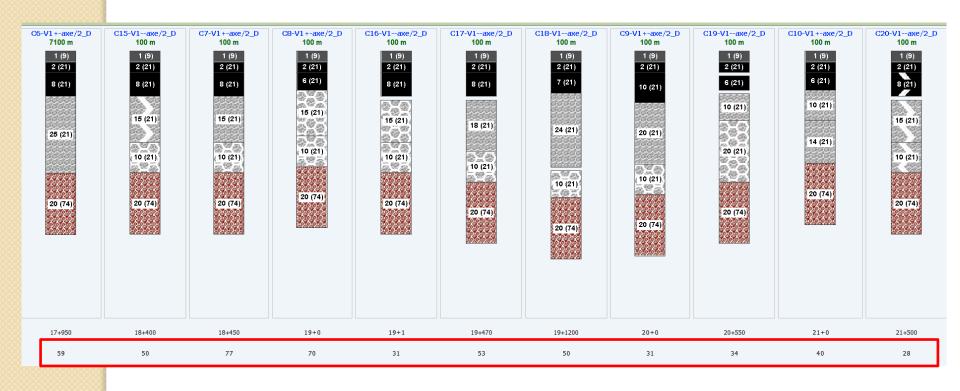
Valeurs des paramètres de dimensionnement des matériaux FRCC® fraisats et ERTALH® présentant des formulations conformes à celles testées sur le manège

Conclusion et perspectives


L'expérience Recyroute sur le manège de fatigue de l'IFSTTAR conduit à une évaluation globalement très encourageante du comportement des matériaux composites testés (FRCC® neuf, FRCC® fraisats et grave ERTALH®), utilisés en assise de chaussées pour trafic lourd.

Ces performances sont associées à des exigences de très bon contrôle de la construction, telles que l'homogénéité du dosage en fibres, le fort niveau de compactage des matériaux, la très bonne maîtrise des épaisseurs, ainsi qu'un soin particulier apporté à la réalisation de la couche d'accrochage du revêtement bitumineux mince.

L'expérimentation confirme l'obligation d'emploi de granulats durs pour la confection de ces matériaux. Le choix d'un revêtement bitumineux mince peut constituer un point critique de la construction si les conditions de mise en œuvre ne sont pas strictement respectées.


Saisie des carottages dans Erasmuserasmus

• Du PR 15+500 à 17+800 grave Ertalh épaisseur≥40 cm

Saisie des carottages dans Erasmus

• Du PR 17+800 à 21+800 grave Ertalh épaisseur≥25 cm

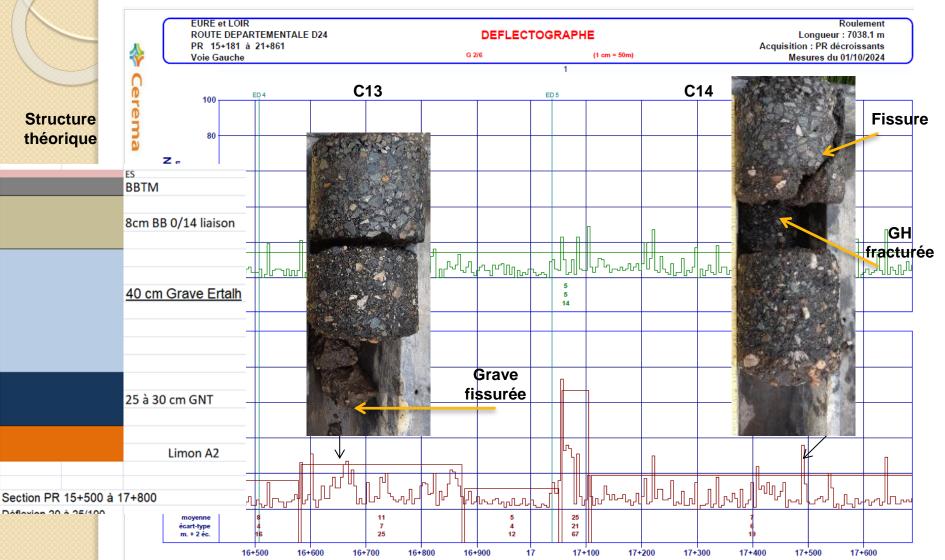
Structure RD 24

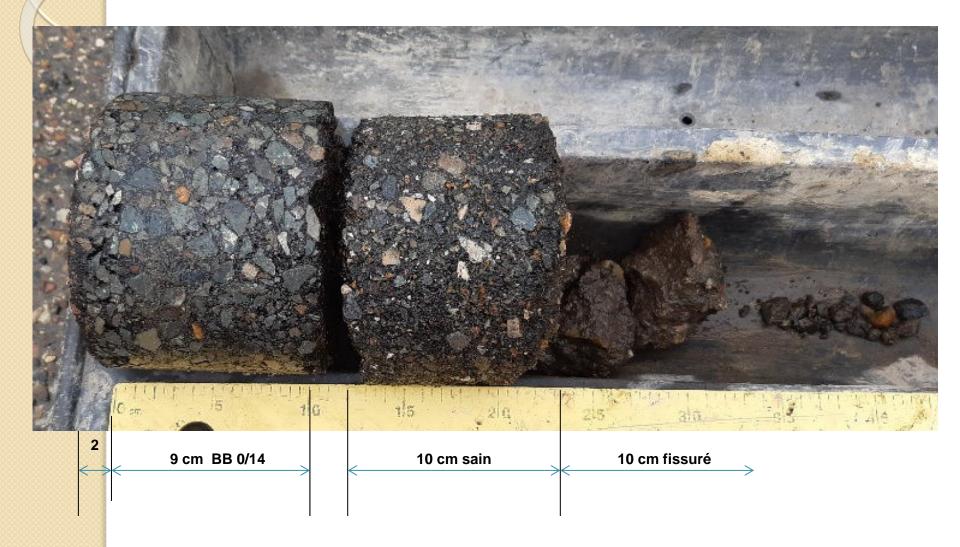
Ctata alaa.	4. DD 24		
Structure chau	issee KD 24		
	ES		ES
	BBTM		ВВТМ
	8cm BB 0/14 liaison		8cm BB 0/14 liaison
	30111 DD 37 21 Hallson		Com BB of Et maioen
	10 0 5.4-11.		05 On Estalla
	40 cm Grave Ertalh		25 cm Grave Ertalh
			25 à 30 cm GNT
	25 à 30 cm GNT		Limon A2
	25 a 50 cm GN1		LIMON AZ
	Limon A2		
Section PR 15+500 à	17+800	Section PR 17+800 à	21+200
Déflexion 20 à 25/100		Déflexion 40 à 45/100	

RD 24

- Constat à ce stade :
 - quelques décollements entre le béton bitumineux et la grave composite
 - Grave composite : état varie le plus souvent bon à parfois fracturé

Diagnostic – C2 carotte saine expert pour les chausses


Solution 1	Fatigue	Fluage	Dégâts dus au	Fissuration th	Fissuration de	Transfert de c	D éfaut d'Interf	Décohésion	D rain ag
<mark>Section</mark> Trafic: 80. PL/jour: t3- Calage mécanique (2024) Déflexion calculée:39 mm/100 Valeur de calage:39 mm/100	faible	non	non	non	non	non	non	non	moyen
<mark>es-mono-dg</mark> ENDUIT-MONOCOUCHE-DOUBLE-GRAVILLONN (2015) 1.cm, 9 an(s), collé 1000 MPa / 1.cm	non	x	x	fort(e)	x	x	х	x	х
<mark>bbtm 10</mark> BB-TRES-MIN CE-0/10 (2003) 2 cm, 21 an(s), co ll é 4000 MPa / 2. cm	non	non			×	×		x	x
bbsg-0/10-C3 BBSG-0/10-CLASSE-3 (2003) 6 cm, 21 an(s), collé 5500 MPa / 6. cm	faible				×	×	non	x	x
ERTALH_25 ERTALH_25 (2003) 20 cm, 21 an(s), frottement 7500 MPa / 20 cm sain	faible	×		×	non	non		non	x
<mark>ERTALH_25</mark> ERTALH_25 (2003) 20 cm, 21 an(s), collé 7500 MPa / 20 cm sain	faible	×		×					x
<mark>gnt1</mark> Grave non traitée (1950) 20 cm, 74 an(s), collé 480 MPa / 10 cm 240 MPa / 10 cm	moyen(ne)		x	x	x	x	х	х	х
<mark>Sol</mark> 26 MPa	non	x	non	x	х	x	х	x	x


RD 24 sens - PR 16 +500 à 17+500 sin

Rappel déflexion

Carotte CI3 - interprétation Système expert pour les chaussées

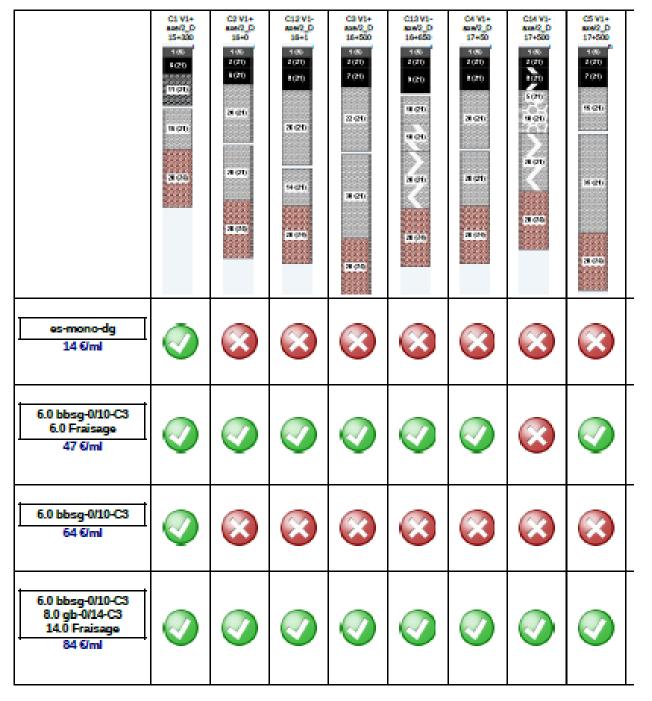
Diagnostic – CI3 grave fissure

888	0-1-1	Fallens	Fl	D 4-24- d	Financial at the	Firmunking de		D. Comp. Altrana	D foot files
	Solution 1	Fatigue	Fluage	Degats dus a	Fissuration th	Fissuration de	I ransfert de c	Defaut d'Inter	Décohésion
	Section Trafic: 80. PL/jour: t3- Calage mécanique (2024) Déflexion calculée:41 mm/100 Valeur de calage:41 mm/100	faible	non	non	non	fort(e)	non	moyen(ne)	non
ENDUI	<mark>es-mono-dg</mark> IT-MONOCOUCHE-DOUBLE-GRAVILLONN (2015) 1. cm, 9 an(s), collé 1000 MPa / 1. cm	non	×	x	fort(e)	×	x	× Saisie E	×
	bbtm10 BB-TRES-MINCE-0/10 (2003) 2 cm, 21 an(s), collé 4000 MPa / 2. cm	non	non			×	x	2 bbt	ono-dg (9) n10 (21) /14-C3 (21)
	bbsg-0/14-C3 BBSG-0/14-CLASSE-3 (2003) 9 cm, 21 an(s), décollé 5500 MPa / 9. cm	faible				×	x	10 ERTA	LH_25 (21)
	ERTALH_25 ERTALH_25 (2003) 20 cm_21 an(s), collé 7500 MPa / 10. cm sain 2250 MPa / 10. cm fissuré	faible	×		x	fort(e)	non		LH_25 (21)
	ERTALH 25 ERTALH_25 (2003) 20 cm, 21 an(s), collé 2250 MPa / 20 cm fissuré	faible	×		x			20 ERTA	LH_25 (21)
	<mark>gnt1</mark> Grave non traitée (1950) 20 cm, 74 an(s), collé 480 MPa / 10 cm 240 MPa / 10 cm	moyen(ne)		x	x	×	x	20 grave-n	

Diagnostic – CI4 sur fissure ERASM Systeme expert pour les C

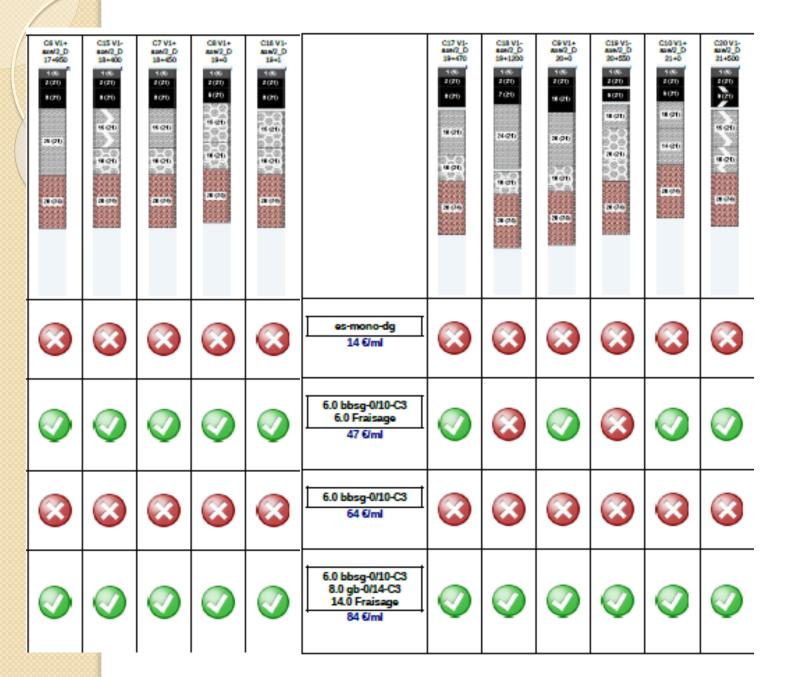
Solution 1	Fatique	Fluage	Dégâts dus a	Fissuration th	Fissuration de	Transfert de c	D éfaut d'Inter	Décohésion
Section Trafic: 80. PL/jour: t3- Calage mécanique (2024) Déflexion calculée:28 mm/100 Valeur de calage:29 mm/100	faible	non	non	non	fort(e)	faible	non	fort(e)
<mark>es-mono-dg</mark> Enduit-monocouche-double-gravillonn (2015) 1. cm, 9 an(s), collé 1000 MPa / 1. cm	non	×	x	fort(e)	×	X	Saisie E 1 es-mono	-dg (9)
bbtm10 BB-TRES-MINCE-0/10 (2003) 2 cm, 21 an(s), collé 2000 MPa / 2. cm	non	non			×		2 bbtm10 bbsg-0/14-	
bbsg-0/14-C3 BBSG-0/14-CLASSE-3 (2003) 8 cm, 21 an(s), collé 2000 MPa / 8. cm	faible				×	26	5 ERTALH_: 0 ERTALH	
ERTALH_25 ERTALH_25 (2003) 	faible	x		х	fort(e)	07/0	70 70 2007	
ERTALH_25 ERTALH_25 (2003) 20 cm, 21 an(s), collé 2250 MPa / 20 cm fissuré	faible	×		x		(0 ERTALH_	
<mark>gnt1</mark> Grave non traitée (1950) 20 cm, 74 an(s), collé 480 MPa / 10 cm 240 MPa / 10 cm	non		x	x	x	20 g	rave-non-t	raitee (74)
<mark>Sol</mark> 79 MPa	non	x	non	x	x			

RD 24 cahier des charges



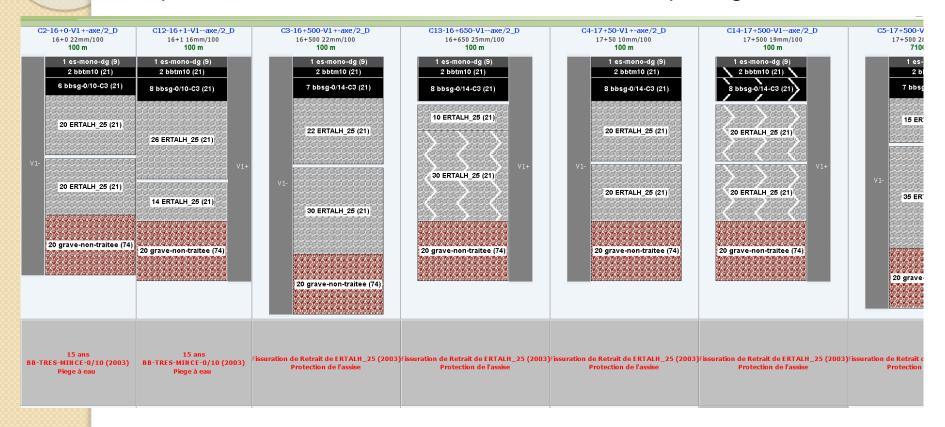
Objectif:

Définir la solution d'entretien optimale pour des durées de vie de 15 et 20 ans.

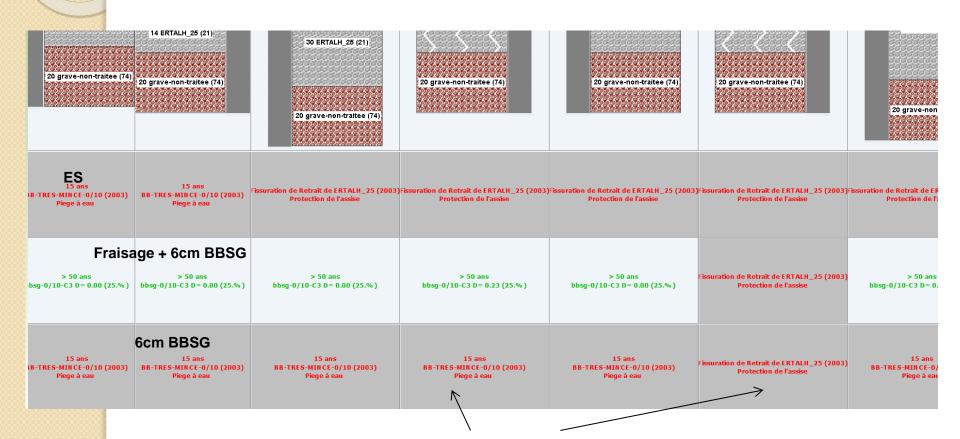

Compte tenu de notre budget, du linéaire de la section et du niveau des déflexions, l'idée est de mettre un BBM ou un BBSG après traitement des Fissures Transversales et d'éventuelles purges localisées.

- Durée de vie 15 ans
- Étude solution enduit superficiel
- BBSG en couche de roulement
 - Étude avec fraisage sur 6cm + BBSG
 - étude en rechargement de 6cm BBSG

Résultats sur la 1ère section très fissurée en grave Ertalh sur 40cm



Résultats sur la section moins fissurée en grave Ertalh sur 25cm



Echec de la solution enduit superficiel:

présence eau dans le BBTM et assise non protégée

RD 24 examen des résultats ERASMU Système expert pour les chaussées

Echec de la solution rechargement 6BBSG: présence eau dans le BBTM et assise non protégée

Solution pour la carotte C14 Système expert pour la C14 C14 Système expert pour les

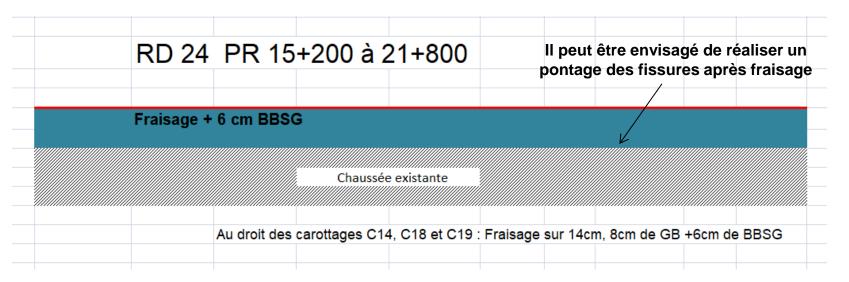
ERASMUS
Système expert pour les chaussées

C14

						****	****		****				
	C1 V1+ aue(2_D 15+000	25 A1+ 2045 D 2040	C12V1- aue/2_D 16+1	C3 V1+ ase/2_D 16+500	C13V1- ase2_D 16+650	04 V1+ ase(2_D 17+50	C14 V1- axe/2_D 17+500	CS V1+ axe/2_D 17+500	C6 V1+ axe/2_D 17+950	C15 V1- aue/2_D 38+400	C7 V1+ aue/2_D 18+450	CBV1+ axe/2_D 19+0	016 V1- 80 N2_D 19-1
	100 8020	1 (8) 2 (21)	1 (%) 2 (21)	1 (8) 2 (21)	1 (8) 2 (21)	1 (%) 2 (21)	100 2020	100 2020	1 (8) 2 (21)	1 (8) 2 (21)	1 (%) 2 (21)	1 (8) 2 (21)	1 (8) 2 (21)
	11(20)	#(20)	# (21)	7 (21)	# CPO	R(20)	070	7(20	#(20	# (21)	# (21)	1(20 2(2)	H (21)
	\$30000	28 (24)		220	18 (21)	31(21)	22	15 (24)		18 (26)	48 (24)	16 (21)	15 (24)
	18 (21)		36.60	240	2		74	10000	20 (20)	9-2	0.50)	900	500
	50000				100		БX			400	4 20	000	a 00
	800	at (2t)	14-02-0		22	at gets	a 20	(86 (24)	200	28 (24)	20 020	28 (20)	28 (24)
	53333	00000	50000	34 (21)	35555	35550	50000						
		28 (20)	28 (24)	2000	28 (24)	more)	200	- 10 mm					
		88888		28 (24)				200					
es-mono-dg 14 6/ml		X			X	×	\otimes	X		X			
244112		~	~	•	~	•	•		•	•	•	•	~
6.0 bbsg-0/10-C3													
6.0 Fraisage 47 6/ml						\bigcirc	\otimes		\bigcirc				
	_	_	_	_	_	_		1	_	_	_	_	-
6.0 bbsg-0/10-C3		X	X	X	X	X	\otimes	X		\otimes	X		
64 €/ml					~				\otimes			W	~
6.0 bbsg-0/10-C3 8.0 gb-0/14-C3													
8.0 ab-0/14-C3													
14.0 Fraisage				and the second		2.0							
14.0 Fraisage 84 €/ml	Ø			O	\bigcirc	Ø	\bigcirc	Ø	O	W			
14.0 Fraisage	V				•								

ERASMUS

RD24 du PR: 15+146 au PR: 21+805 (2024)

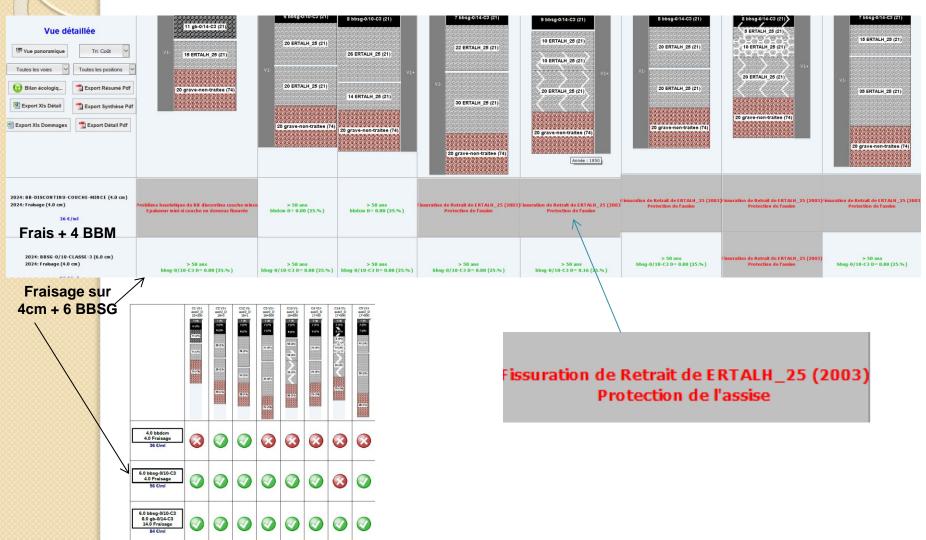

12/03/24

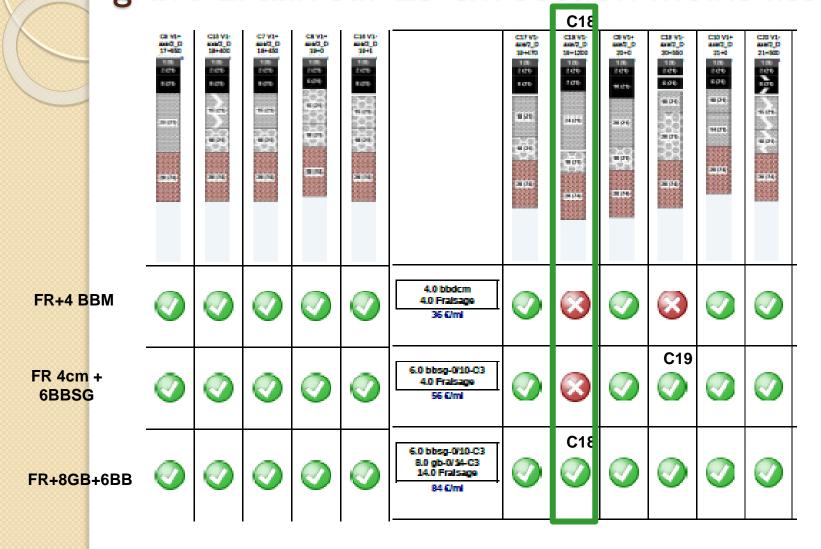
		C18		C19						
	C17 VI- MARQ, D. O. 194-00 100 100 100 100 100 100 100	Call VI. 1841200 1941200 1970 1970 1970	CSV14- mark2_D 20-0 20-0 100 100 100 100 100 100 100 100 100	C18 VI- 18872. D. 18972. D. 1970. 1970. 1970. 1970.	COO 912-00097-0-00097-0-0009-0	23-500 12-500 13-70 13-70 13-70 13-70				
es-mono-dg 14 6/ml	8	8	3	8	8	8				
6.0 bbsg-0/10-C3 6.0 Fraisage 47 6/ml	Ø	8	②	3	②	②				
6.0 bbsg-0/10-C3 64 €/ml	8	8	3	8	8	8				
6.0 bbsg-0/10-C3 8.0 gb-0/14-C3 14.0 Fraisage 84 €/ml	Ø	②	②	②	(②				

RD 24 – Résultats de l'étude Système expert p

ERASMUS Système expert pour les chaussées

Stratégie durée de calcul 15 ans


- Résultats identiques pour la stratégie de durée de calcul 20 ans


- Etude de la solution fraisage sur 4cm et BBM
- Etude de le solution fraisage sur 4cm et BBSG sur 6cm

Solutions section PR 15+200 à 17+800 ERASMUS grave Ertalh sur 40 cm section très fissurée

Solutions section PR 17+800 à 21+800 : ERASMUS grave Ertalh sur 25 cm section moins fissurée

RD 24 les solutions envisageables

	Fraisage +	6 cm BBS0	3						
			Channel						
			Chausse	e existante					
		Au droit des	carottages C1	4, C18 et C19	: Fraisage	sur 14cm	n, 8cm de GB	+6cm de	BBSG
	RD 24	PR 15	+200 à 2	21+800					
	Fraisage s	ur 4cm + 6	cm BBSG	200000000000000000000000000000000000000	Fraisage	e sur 4c	m +4 cm Bl	ВМ	
K			Chaussé	e existante					
PR 15+200				PR 17+800					PR 21+80
Au drait da	es carottage	c C14 C1	9 at C10 : E	rojeogo su	14cm 9	Pom do	CB 16am	do DDG	20

RD 24 – Conclusion de l'étude

- Des solutions pour l'ensemble de la section étudiée
- Il est nécessaire de fraiser soit sur 4cm soit sur 6cm
- Il peut être envisagé de réaliser un BBM sur 4cm sur la section PR 17+800 à 21+800
- L'attention du maître d'œuvre est portée sur les zones concernées par les carottages C14, C18 et C19, il peut être envisagé une solution localisée.

Conclusions

- Les investigations permettent :
 - De bien appréhender l'étude
 - De vérifier sous un trafic modéré le comportement de la grave composite
 - D'avoir une bonne prise en compte de la zone très fissurée
 - De conforter les solutions proposées

 Un grand merci à Rolf pour son aide précieuse

Merci de votre attention

